Protecting Information Assets
- Week 7 -

Physical and Environmental Security
MIS5206 Week 7

• Physical and Environmental Security
• Test Taking Tip
• Quiz
Physical and Environmental Security

- Focuses on hazardous energies and materials

- Addresses the physical protection of the resources of an organization, which include:
 - People
 - Facilities and equipment
 - Systems
 - Data

- Concerns:
 - People safety
 - How the environmental issues affect equipment and systems
 - How people can physically enter an environment

People safety always takes precedence over the other security factors

Saving human lives is the first priority in any life-threatening situation
Sources of physical threats...

- **Severe weather, earthquakes and landslides**
- **Humans**
- **Fire**
- **Energies**
- **Materials and chemicals**
- **Equipment**
- **Organisms**
Sources of physical threats

• Severe weather
 – Likelihoods of hurricanes, tornadoes, high winds, severe thunderstorms, rain, snow, sleet and ice
 • Causing fires, flooding/water damage, structural damage, loss of utilities and communications, and hazards to personnel
 – Lightening strikes can discharge 100,000 amperes of electric current and heat the air to 54,000°F (30,000°C), in US starts ~10,000 fires/year

• Earthquakes and landslides
 – Can generate vibration, movement, falling objects
 – May weaken structural integrity and cause unstable buildings to collapse
Sources of Physical Threats...

- **Fire and Chemicals** - explosion, smoke, toxic materials, industrial pollution
- **Energy** - electricity, magnetism, radio wave anomalies
- **Equipment** - mechanical or electronic component failure
- **Organism** - virus, bacteria, animal, insect
- **Human** – vandalism, sabotage, theft, terrorism, war
 - Consider both internal and external threats
Physical Control Types

Administrative Controls

Facility selection, facility construction and management, personnel identity badges and controls, evacuation procedures, system shutdown procedures, fire suppression procedures, hardware failure procedures, bomb threat and lock down procedures, ...

Physical Controls

Perimeter security, fences, lighting, facility construction, keys and locks, access card and readers, ...

Technical Controls

Physical access control and monitoring system, intrusion detection and alarm system, fire detection and suppression system, uninterrupted power supply, heating / ventilation / air conditioning system (HVAC), disk mirroring, data backup,...
Site selection...

An administrative control for facilities

- **Climactic disasters**
 - Is it in a high likelihood area for hurricanes, earthquakes, flood plains, tornadoes or other natural threats?
 - Are evacuation routes available and what is the level of emergency preparedness?
- **Visibility**
 - Is it an easy target for crime, terrorism or vandalism? (adjacent to high-profile organization, government or military target?)
 - Does it have a low profile for avoiding unneeded attention? Is it possible to avoid external markings?
- **Local Considerations**
 - What are the crime rates and adjacent neighborhoods?
 - Is it near hazard materials storage? Railroad freight lines? Airport flight paths?
- **Accessibility**
 - Is it convenience to travel: airports and/or railroads? What are the local traffic patterns?
 - Is it close to emergency services: police stations, fire stations and hospitals
- **Utilities**
 - Does location in the power grid provide clean/stable power?
 - Are telecommunications supported by sufficient high-speed fiber optic network connections?
 - Are there multiple provides to provide redundant utilities?
- **Joint tenants**
 - Are they serious enough about security?
 - Should/would they share physical security responsibilities and costs?
Perimeter Security - physical control for facilities

Perimeter security controls are used to prevent, detect and respond to unauthorized access to a facility

Natural access control to limit opportunities for crime

- Uses security zones to restrict movement and differentiate between areas
- Requiring different levels of protection
 - Public areas
 - Semi-private area
 - Private areas
- Limiting points of entry into a building, using structures (e.g. sidewalks & lights) to guide visitors to main entrances and reception areas
Natural access control to limit opportunities for crime

- Uses security zones to restrict movement and differentiate between areas
- Requiring different levels of protection
 - Public areas
 - Semi-private area
 - Private areas

- Limiting points of entry into a building, using structures (e.g. sidewalks & lights) to guide visitors to main entrances and reception areas
Perimeter Control

Fencing – different heights serve different purposes:
- 3 – 4 feet – deter casual trespassers
- 6 – 7 feet – deter general intruders
- 8 feet with barbed wire slanted at a 45° angle – deter more determined intruders

PIDAS – Perimeter Intrusion and Detection Assessment System
- Fencing system with mesh wire and passive cable vibration sensors
- Detects intruder approaching and damaging the fence (may generate many false alarms)

Bollards – Small round concrete pillars placed around a building
- Protects from damage by someone running a vehicle into the side of the building or getting too close for car-bomb

Lighting – Streetlights, floodlights or searchlights
- Good deterrents for unauthorized access and personnel safety
- National Institute of Standards and Technology (NIST) standard requires critical areas to be illuminated 8 feet in height with 2-foot candle power
Target Hardening

– Complements natural access controls by using mechanical and/or operational controls: e.g. door and window locks, alarms, guards and receptionists, visitor sign-in/sign-out procedures, picture identification requirements,...
Facilities – Data Center

• Should not be located on the top floor because of risk of fire

• Should not be in the basement - flooding risk

• Ideally in the core of a building - provides protection from natural disasters and intrusion

• Should not be close to a public area – to ease security
Technical Physical Access Monitoring Controls

Dry contact switch - uses metallic foil tape as a contact detector to detect whether a door or window is opened.

Electro-mechanical detection system - detects a change or break in a circuit. It can be used as a contact detector to detect whether a door or window is opened.

Vibration detection system - detects movement on walls, ceiling, floors by vibration.

Pressure mat - detects whether there is someone stepping on the mat.

Visual recording device - Camera and Closed Circuit TV (CCTV), records the activities taking place in a particular area. It should be used together with security guards to detect for anomalies.
Photoelectric or photometric detection system - emits a beam of light and monitors the beam to detect for motion and break-in.

Wave pattern motion detector - generates microwave or ultrasonic wave, and monitors the emitted wave to detect for motion.

Passive infrared detection system - detects for changes of heat wave generated by an intruder.

Audio or Acoustical-seismic detection system - listens for changes in noise level.

Proximity detector or capacitance detector - emits magnetic field and monitors the field to detect for any interruption. It is especially useful for protecting specific objects.
Construction design considerations

Exterior Walls – Able to withstand high winds, reduce electronic emanations (when needed), avoid windows at lower levels – otherwise fixed, shatterproof, opaque to conceal inside activities, and reinforced with bars at lower levels (when needed)...

Interior Walls – Must extend from floor to ceiling (through dropped ceilings and raised floors to stop intruders) if adjacent to restricted or secure areas, meet building and fire ratings (flammable material storage ratings), reinforced (Kevlar) to protect sensitive areas...

Doors – Resistant to forcible entry, fire rating equal to surrounding walls, unlocked from inside with emergency marking, electronic locks and access controls should “fail-soft” (unlocked during power outage) or “fail-safe” (locked during power outage) intrusion detection alarm, doors that swing out to facilitate emergency existing have hinges on the outside which must be secured so hinge pins are not easily lifted by placement of doors...

Windows – characteristics of windows material (opaque, translucent, transparent, shatterproof, bulletproof), intrusion detection alarms, placement of windows...
Construction design considerations

Ceilings – Consider fire and weigh-bearing building codes, waterproofing to prevent water leakage from upper floors.

- Drop-ceiling may temporarily hide intruders and small water leaks; conversely
- Stained ceiling tiles can reveal leaks while temporarily impeding water damage

Floors – Consider fire and weight-bearing building codes

- Raised floors require electrical grounding and non-conducting material to prevent safety risks

Wiring – All conduits, cable runs and wiring must be protected and comply with building and fire codes

- Special plenum cabling must be used because PVC-clad cabling releases toxic chemicals when it burns

Lighting – Exterior lighting for all physical spaces

- All conduits, cable runs and wiring must be protected and comply with building and fire codes

A plenum is the vacant area below a raised floor or above a drop ceiling. Fire in these areas can spread rapidly carrying smoke and noxious fumes to other areas of a burning building.
Server rooms, wiring closets, media and evidence storage facilities contain high-value equipment and media critical to:

- *Ongoing business operations*
- *Supporting investigations*

Physical security controls for these locations can include:

- **Strong access control**
 - Bi-factor (or tri-factor): key cards, PIN pad or biometric

- **Fire suppression**
 - Inert gas fire suppression is more common than water sprinklers
 - *Water damages computer equipment*

- **Video surveillance**
 - Cameras focused to observe on goings of both intruders and authorized personnel

- **Visitor log**
 - Signed by all visitors classified as needing a continuous escort

- **Asset check-in / check-out log**
 - All personnel are required to log introduction and removal of any equipment and media
Restricted and work area security often receive additional physical security controls beyond:

- Key card access control systems
- Video surveillance

Physical security controls for secure locations may also include:

- Multi-factor key card entry
 - Bi-factor (or tri-factor): Key cards + PIN pad or biometric
- Security guards and guard dogs
 - At ingress/egress points to prevent unauthorized access, roaming facility alert for unauthorized personnel or activities, involved in capture of unauthorized personnel in a facility
- Security wall and fences
 - 1 or more to keep authorized personnel away from facilities
- Security lighting
 - Additional lighting to expose and deter would-be intruders
- Security gates, crash gates, and bollards
 - Limit the movement of vehicles near a facility to reduce vehicle-borne threats
Physical security controls for secure locations may also include:

- **Mantrap**

 is made of two doors, one for entry, one for exit from the booth/mantrap. When the first door is open, the second remains locked until the first one is closed and the individual inside the booth is cleared by a security operator monitoring this interlocking system.
Utilities and heating, ventilation, and air conditioning (HVAC)

...are Environmental and life safety controls necessary for maintaining safe and acceptable operating environment for computers and humans

- Electrical power
 - 1+ dedicated feeders from 1+ utility substations or power grids
 - Adequate physical access controls to circuit breakers and distribution panels
 - Emergency Power Off (EPO) switch installed near major systems and exit doors
 - To shut down power in response to fire or electrical shock
 - Backup power
 - Only for critical facilities and systems
 - Source: Diesel or natural gas
 » Fuel source must be locally stored for emergency life systems (such as emergency lighting and fire protection systems) – this often rules out natural gas pipelines
Electrical power continued...

- **Controls for electrostatic discharge (ESD)**
 - **Ideal humidity level for computer equipment is 40% - 60%**
 - Higher causes condensation and corrosion
 - Lower increases potential for static electricity (ESD)
 » Static charge of 40V (volts) can damage circuits and 2,000V can shutdown a system
 » Minimum discharge felt by humans is 3,000V (if you feel it there’s a problem)
 - Proper grounding in-place
 - Antistatic flooring, carpeting, and floor mats

- **Controls for electrical noise – a “transient” is a momentary line-noise disturbance**
 - Power line conditioners installed
 - Proper grounding in place
 - Shielded cables used

- **Electric anomalies include:**
 It is not the volts that kill – it’s the amps!
 - Any amount of current over 0.01 amp is capable of producing painful to severe shock
 - Currents between **0.1** to **0.2** amp are lethal

<table>
<thead>
<tr>
<th>Electrical Event</th>
<th>Anomaly Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surge</td>
<td>Prolonged rush of power</td>
</tr>
<tr>
<td>Spike</td>
<td>Momentary rush of power</td>
</tr>
<tr>
<td>Inrush</td>
<td>Initial power rush</td>
</tr>
<tr>
<td>Sag</td>
<td>Short drop in voltage</td>
</tr>
<tr>
<td>Brownout</td>
<td>Prolonged drop in voltage</td>
</tr>
<tr>
<td>Fault</td>
<td>Momentary loss of power</td>
</tr>
<tr>
<td>Blackout</td>
<td>Total loss of power</td>
</tr>
</tbody>
</table>
Electrical power continued...

- Uninterruptible Power Supply (UPS)
 - Is the most important protection against electrical anomalies
 - Is not a backup power source!
 - Is a temporary source of clean power for sensitive systems during electrical outages (sag, brownout, blackout)
 - Must be sufficient to provide 5 to 30 minutes of temporary power to support a proper controlled shutting down of protected systems and starting and bringing up a backup generator online

- Surge protectors and suppressors only provide minimal spike protection – not a substitute for a UPS
Power Protection

Uninterrupted Power Supply (UPS) to protect against a short duration power failure.

There are two types of UPS:

• Online UPS – It is in continual use because the primary power source goes through it to the equipment. It uses AC line voltage to charge a bank of batteries. When the primary power source fails, an inverter in the UPS will change DC of the batteries into AC.

• Standby UPS – It has sensors to detect for power failures. If there is a power failure, the load will be switched to the UPS. It stays inactive before a power failure, and takes more time than online UPS to provide power when the primary source fails.
Power Protection

Backup power source to protect against a long duration power failure, e.g. motor generator, another electrical substation, etc.

Voltage regulator and line conditioner to protect against unstable power supply.

Proper grounding for all electrical devices to protect against short circuit and static electricity, e.g. by using 3-prong outlets.

Cable shielding to avoid interference.

Power line monitor to detect for changes in frequency and voltage amplitude.

Emergency power off (EPO) switch to shut down the power quickly when required.

Electrical cables should be:

− placed away from powerful electrical motors and lighting to avoid electromagnetic interference.

− placed away from powerful electrical cables and fluorescent lighting to avoid radio frequency interference.
Heating, ventilation, and air conditioning (HVAC)

– Ideal temperature range for computer equipment is between 50°F – 80°F (10°C – 26°C)
 • Magnetic storage can be damaged at 100°F (38°C)
– Ideal humidity range for computer equipment is between 40% - 60 %
 • Higher humidity causes condensation and corrosion
 • Lower humidity increases potential for ESD (static electricity)
– Computer side panels of racks kept...
 • Closed to ensure proper airflow for cooling and ventilation
 • Locked for physical access control
 • Blocked by blanking panels in place of gaps in half-filled racks to reduce hot and cold air mixing which reduces cooling system efficiency
– Emergency Power Off (EPO) switch should be installed near exits for manual emergency shutdown
– HVAC is shutdown automatically by most gas-discharged fire suppression systems
– HVAC should be dedicated, controlled and monitored to notify appropriate personnel when problems detected
 • If not need proper liaison with building manager to ensure everyone knows who to contact in case of emergency
Water damage

And damage from liquids (in general) can occur from many sources including:

- Leaking roofs
- Pipe breakage
- Firefighting efforts
- Spilled drinks
- Flooding
- Tsunamis

- Wet electrical equipment and computers are a lethal hazard

- Preventative and detective controls are necessary to make sure uncontrolled water does not destroy expensive assets or disrupt business operations

 - Water diversion barriers to prevent water from entering sensitive areas
 - Water detection sensors and alarms to detect presence of water and alert personnel in-time to prevent damage

Sometimes... You just KNOW.
Fire prevention, detection, & suppression

– Hazards associated with fires include:
 • Smoke,
 • Toxic vapors and materials
 • Water damage
 • Building collapse

– For a fire to burn it requires: fuel, oxygen and heat
 • Fire extinguishing and suppression systems remove one of these or break up the chemical reaction of among the three to fight fires

– Fires are classified by the type of fuel burned:

<table>
<thead>
<tr>
<th>Class</th>
<th>Fuel Description</th>
<th>Extinguishing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Common combustibles: E.g. paper, wood, furniture, clothing...</td>
<td>Water or soda acid</td>
</tr>
<tr>
<td>B</td>
<td>Burnable fuels: E.g. gasoline or oil</td>
<td>CO₂, soda acid or Halon substitutes</td>
</tr>
<tr>
<td>C</td>
<td>Electrical fires: E.g. computers or electronics</td>
<td>CO₂, or Halon substitutes - Turn off electricity first!</td>
</tr>
<tr>
<td>D</td>
<td>Special fires: E.g. combustable metals</td>
<td>Special techniques, total immersion,...</td>
</tr>
<tr>
<td>K (or F)</td>
<td>Cooking oils or fats</td>
<td>Water mist or fire blankets</td>
</tr>
</tbody>
</table>

Class A, B, and C fires and primary extinguishing methods are covered on the CISSP exam!

D, K and F are not covered
3 main types of fire detection systems

1. **Heat-sensing**
 - Sense temperatures either
 - Exceeding a predetermined threshold level ("Fixed-temperature detectors")
 - Associated with lower false-alarm rate - preferred
 - Rapidly rising ("Rate-of-rise detectors")

2. **Flame-sensing**
 - Sense either flicker (pulsing) or infrared energy of flames
 - More expensive but provide rapid fire detection

3. **Smoke-sensing**
 - Senses variations in light intensity
 - Senses when smoke interrupts beams of light (similar to photoelectric)
 - Detects disturbances in normal ionization current of radioactive materials
 - Detects minute amount of smoke in air drawn into sample chamber
Fire detection & suppression

2 main types of fire suppression (extinguishing) systems

1. Water-sprinkler systems (Class A, D, K fires)
 1. Wet-pipe (or closed-head)
 2. Dry-pipe
 3. Preaction
 4. Deluge

2. Gas discharge systems (Class B and C fires)
 1. CO₂ Carbon dioxide (Class B and C fires)
 2. Soda acid (Class A and B fires)
 3. Gas-discharge (Class B and C fires)

Extinguisher type and fire classes it is for should be clearly marked on the extinguisher!

MIS 5206 Protecting Information Assets
Fire detection & suppression

Water-sprinkler fire suppression systems (4 main types)

1. **Wet-pipe (or closed-head)**
 - Most common and reliable
 - Pipes always charged with water under pressure and ready for activation
 - Fuse in nozzle melts or ruptures opening gate valve and releasing water
 - Disadvantages: Flooding due to pipe failure (e.g. due to freezing in cold weather) or nozzle/fuse failures

2. **Dry-pipe**
 - No standing water in the pipes
 - Activation opens clapper valve, water flows in the pipe as air is blown out
 - Helps protect from accidental flooding, provides time delay to (possibly) shutdown computer systems and/or power
 - Less efficient than wet-pipe system

3. **Preaction – Combines dry-pipe and wet-pipe systems**
 - Pipes are initially dry. Triggering of heat sensor charges pipes with water (but does not discharge) and activates an alarm. When fusible link melts water is discharged, as in wet-pipe systems
 - Reduces risk of accidental discharge and enables manual intervention
 - Recommended systems for computer-equipment areas

4. **Deluge – Not typically used for computer-equipment areas**
 - Quickly delivers large volumes of water while operating like a dry-pipe system
Gas fire suppression systems (3 main types)

1. Carbon dioxide (CO$_2$)
 - Extinguishes fire by removing oxygen (from fire triangle)
 - Most effective against Class B and C fires
 - Removing oxygen makes it lethal and best suited for unmanned areas or with a delayed action with manual override in manned areas
 - Used in portable extinguishers – keep within 50ft of electrical equipment and near all exits

2. Soda acid
 - Suppresses flammable components with a chemical compound removing the fuel from the fire triangle
 - Most effective against Class A and B fires
 - NOT to be used for Class C fires because it is highly corrosive

3. Gas-discharge
 - Creates a chemical reaction that separates elements of the fire triangle
 - Most effective against Class B and C fires
 - Uses inert gases that mixes thoroughly with the air, spreads extremely quickly and will not damage computer equipment, nor leave a liquid nor solid residue
 - At concentrations of >10% these gases are harmful if inhaled
 - Degrades into toxic chemicals when used on fires that burn at temperatures >900°F (482°C)
 - Halon (which depleted ozone) was the preferred for gas-discharge fire suppression systems until 1994 when it was replaced with
 - FM-200 (the most effective), CEA-401 and CEA308, NAF-S-III, FE-13, Intergen, Argon or Argonite
Test Taking Tip

Keep track of your guesses

• OK to guess and move on if you don’t know answer

• Often in a standardized test, later questions on the same topic appear

• Remembering where you saw that topic earlier and if you guessed at the answer can make that information valuable
Quiz

The quiz is posted on the Wrap-Up Page for Week 7 along with the answer sheet. Take the quiz first, then see how you did.