

**T** Fox School of Business

# MIS2502: Review for Exam 3

JaeHwuen Jung

jaejung@temple.edu http://community.mis.temple.edu/jaejung

#### Overview

- **Date/Time:** During regular class time on 4/30
- Place: Regular classroom

Please arrive 5 minutes early!

- Multiple-choice and short-answer questions
- Closed-book, closed-note
- No computer or cellphone
- Please bring a calculator!

#### Coverage

#### Check the Exam 3 Study Guide

- 1. Data Mining and Data Analytics Techniques
- 2. Using R and RStudio
- 3. Understanding Descriptive Statistics (Introduction to R)
- 4. Decision Tree Analysis
- 5. Cluster Analysis
- 6. Association Rules

## **Study Materials**

- Lecture notes
- In-class exercises
- Assignments
- Course recordings

#### How data mining differs from OLAP analysis

#### OLAP can tell you what is happening, or what has happened

- Whatever can be done using Pivot table is not data mining
- Sum, average, min, max, time trend...

Data mining can tell you why it is happening, and help predict what will happen

- Decision Trees
- Clustering
- Association Rules

When to use which analysis? (Decision Trees, Clustering, and Association Rules)

- When someone gets an A in this class, what other classes do they get an A in?
   Association Rules
- What predicts whether a company will go bankrupt? Decision Trees
- If someone upgrades to an iPhone, do they also buy a new case? Association Rules
- Which presidential candidate will win the election? Decision Trees
- Can we group our website visitors into types based on their online behaviors? Clustering
- Can we identify different product markets based on customer demographics? Clustering

# Using R and RStudio

- Difference between R and RStudio
- The role of packages in R
- Basic syntax for R, for example:
  - Variable assignment (e.g. NUM\_CLUSTERS <- 5)</li>
  - Identify functions versus variables

(e.g. kmeans() is a function, kmeans is a variable)

 Identify how to access a variable (column) from a dataset (table) (e.g. dataSet\$Salary)

#### **Understanding Descriptive Statistics**



- Sample (descriptive) statistics:
   Mean (average), standard deviation, min, max ...
- Simple hypothesis testing (e.g., t-test)

# Hypothesis Testing

- uses **p-values** to weigh the strength of the evidence
- **T-test: A small** *p***-value (typically ≤ 0.05)** suggests that there is a statistically significant difference in means.

```
> t.test(subset$TaxiOut~subset$Origin);
Welch Two Sample t-test
data: subset$TaxiOut by subset$Origin
t = 51.5379, df = 24976.07, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
6.119102 6.602939
sample estimates:
mean in group ORD mean in group PHX
20.58603
14.22501
</pre>
```

More about p-values:

http://www.dummies.com/how-to/content/the-meaning-of-the-p-value-from-a-test.html http://www.dummies.com/how-to/content/statistical-significance-and-pvalues.html

### **Decision Tree Analysis**



## **Decision Tree Analysis**

• What are the pros and cons with a complex tree?

Pros: Better accuracy Cons: hard to interpret, overfitting

How would complexity factor affect the tree?
 COMPLEXITY FACTOR: the reduction in error needed for an additional split to be allowed

Smaller COMPLEXITYFACTOR  $\rightarrow$  more complex tree

 How would minimum split affect the tree?
 MINIMUMSPLIT: the minimum number of observations that must exist in a node in order for a split to be attempted

Smaller MINIMUMSPLIT  $\rightarrow$  more complex tree

#### **Classification Accuracy**

Due dista di sutes un su

|          | Predicted outcome: |      |      |             |
|----------|--------------------|------|------|-------------|
|          |                    | 0    | 1    |             |
| Observed | 0                  | 1001 | 45   |             |
| outcome: | 1                  | 190  | 3764 | Total: 5000 |

Error rate? (190+45) /5000= 4.7%
Correct classification rate? (1-4.7%) = 95.3%

#### **Cluster Analysis**

• Interpret output from a cluster analysis



#### **Cohesion and Separation**

- Cohesion
  - Higher withinss = Lower cohesion (BAD)
  - High withinss means that elements within cluster are far away from each other
- Separation
  - Higher betweenss = Higher separation(GOOD)
  - High betweenss means that **different clusters** are far away from each other

What happens to those statistics as the number of clusters increases?

Higher cohesion (Good)

Lower separation (Bad)

#### **Cohesion and Separation**

• Interpret withinss (cohesion) and betweensss (separation)

> # Display withinss (i.e. the within-cluster SSE for each cluster)
> cat("\nWithin cluster SSE for each cluster (Cohesion):")

Within cluster SSE for each cluster (Cohesion): withinss error > MyKMeans\$withinss; (cohesion) [1] 6523.491 990.183 6772.426 2707.390 5102.896

> # Display betweenss (i.e. the SSE between clusters)
> cat("\nTotal between-cluster SSE (Seperation):")

Total between-cluster SSE (Seperation):
> MyKMeans\$betweenss
[1] 45301.67
total betweenss error

> # Compute average separation: more clusters = less separation
> cat("\Average between-cluster SSE:")

# Standardized (Normalized) Data

Interpret standardized cluster means for each input variable

| <pre>&gt; # Display the cluster means (means for each input variable) &gt; print("Cluster Means:"); [1] "Cluster Means:"</pre> |              |                                               |                                                  |                                |
|--------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------|--------------------------------------------------|--------------------------------|
| >                                                                                                                              | print(aggreg | gate(kData,by=list(My<br>ionDensitvPercentile | KMeans\$cluster),FUN=me<br>MedianHouseholdIncome | ean));<br>AverageHouseholdSize |
| 1                                                                                                                              | 1            | -1.1221748                                    | -0.5592874                                       | -0.5078763                     |
| 2                                                                                                                              | 2            | -0.4869803                                    | -0.1423105                                       | 0.3510218                      |
| 3                                                                                                                              | 3            | 0.8552483                                     | 1.3511921                                        | 0.2792033                      |
| 4                                                                                                                              | 4            | 0.8820890                                     | -0.2675451                                       | -0.5983830                     |
| 5                                                                                                                              | 5            | 0.9546766                                     | -0.3133993                                       | 1.3683971                      |

For **standardized values**, "0" is the average value for that variable.

#### For Cluster 5:

- average RegionDensityPercentile >0 → higher than the population average
- average MedianHouseholdIncome, and AverageHouseholdSize <0 → lower than the population average

#### **Association Rules**

#### • Interpret the output from an association rule analysis

| lhs                       | rhs | s su    | oport co   | onfidence li | ft       |
|---------------------------|-----|---------|------------|--------------|----------|
| 611 {CCRD,CKING,MMDA,SVG} | =>  | {CKCRD} | 0.01026154 | 0.6029412    | 5.335662 |
| 485 {CCRD,MMDA,SVG}       | =>  | {CKCRD} | 0.01026154 | 0.5985401    | 5.296716 |
| 489 {CCRD,CKING,MMDA}     | =>  | {CKCRD} | 0.01776999 | 0.5220588    | 4.619903 |
| 265 {CCRD,MMDA}           | =>  | {CKCRD} | 0.01776999 | 0.5107914    | 4.520192 |
| 530 {CCRD,MMDA,SVG}       | =>  | {CKING} | 0.01701915 | 0.9927007    | 1.157210 |
| 308 {CCRD, MMDA}          | =>  | {CKING} | 0.03403829 | 0.9784173    | 1.140559 |

 Compute support count (σ), support (s), confidence, and lift

$$c(X \rightarrow Y) = \frac{s(X \rightarrow Y)}{s(X)}$$
  
Lift(X \rightarrow Y) =  $\frac{s(X \rightarrow Y)}{s(X) * s(Y)}$ 

These two formulas will be provided

But you need to know how to compute support

#### Compute Support, confidence, and lift

| Basket | Items                            |
|--------|----------------------------------|
| 1      | Coke, Pop-Tarts, Donuts          |
| 2      | Cheerios, Coke, Donuts, Napkins  |
| 3      | Waffles, Cheerios, Coke, Napkins |
| 4      | Bread, Milk, Coke, Napkins       |
| 5      | Coffee, Bread, Waffles           |
| 6      | Coke, Bread, Pop-Tarts           |
| 7      | Milk, Waffles, Pop-Tarts         |
| 8      | Coke, Pop-Tarts, Donuts, Napkins |

| Rule                          | Support     | Confidence | Lift                                |
|-------------------------------|-------------|------------|-------------------------------------|
| {Coke} $\rightarrow$ {Donuts} | 3/8 = 0.375 | 3/6 = 0.50 | $\frac{0.375}{0.75 * 0.375} = 1.33$ |
| {Coke, Pop-Tarts} →{Donuts}   | 2/8 = 0.25  | 2/3 = 0.67 | $\frac{0.25}{0.375 * 0.375} = 1.78$ |

- Which rule has the stronger association? {Coke, Pop-Tarts} → {Donuts} has both higher lift and confidence
- Consider:
- (1) a customer with **coke** in the shopping cart.
- (2) a customer with coke and pop-tarts in the shopping cart.

Who do you think is more likely to buy donuts? The second one, with a higher lift

#### Compute Support, confidence, and lift



Total: 10500

- What is the lift for the rule {Potato Chips}  $\rightarrow$  {Krusty-O's}?
- Are people who bought Potato Chips more likely than chance to buy Krusty-O's too?

$$Lift = \frac{s(Potato Chips, KrustyOs)}{s(Potato Chips) * s(KrustyOs)}$$
$$= \frac{0.048}{0.429 * 0.143} = 0.782$$

They appear in the same basket less often than what you'd expect by chance (i.e., Lift < 1).

### **Association Rules**

 What does Lift > 1 mean? Would you take action on such a rule?

The occurrence of  $X \rightarrow Y$  together is more likely than what you would expect by random chance (positive association)

• What about Lift < 1?

The occurrence of  $X \rightarrow Y$  together is less likely than what you would expect by random chance (negative association)

#### • What about Lift = 1?

The occurrence of  $X \rightarrow Y$  together is the same as random chance (no apparent association. X and Y are independent of each other)

#### **Association Rules**

- Can you have high confidence and low lift?
  - A numeric demonstration: Suppose we have 10 baskets. X appears in 8 baskets. Y appears in 8 baskets. X and Y coappear in 6 baskets...

$$\sigma(X) = 8 \Rightarrow s(X) = 0.8$$

$$\sigma(Y) = 8 \Rightarrow s(Y) = 0.8$$
When both X and Y are popular....  

$$\sigma(X \rightarrow Y) = 6 \Rightarrow s(X \rightarrow Y) = 0.6$$
Confidence  $= \frac{\sigma(X \rightarrow Y)}{\sigma(X)} = \frac{6}{8} = 0.75$  You get high confidence  
Lift  $= \frac{s(X \rightarrow Y)}{s(X) * s(Y)} = \frac{0.6}{0.8 * 0.8} = 0.9375 < 1$  But low lift  
When both X and Y are popular, you'd almost expect them to show up in the same baskets by chance !

