
Exam #1 Review
Zuyin (Alvin) Zheng

Data/Information/Database

Data vs. Information

Data

Discrete,
unorganized,

raw facts

Information

The
transformation
of those facts
into meaning

Transactional Data vs. Analytical Data

Transactional

• Captures data
describing and event

• An exchange between
actors

• Real-time

Analytical

• Captures data to
support analysis and
reporting

• An aggregated view of
the business

• Historical

Transactional Database/Analytical Data Store

Transactional Database

Supports management
of an organization’s data

For everyday
transactions

Analytical Data Store

Supports managerial
decision-making

For periodic analysis

This is what is commonly
thought of as “database

management”

This is the foundation for
“advanced data analytics”

The Transactional Database

oStores real-time, transactional data

In business, a transaction is the exchange
of information, goods, or services.

For databases, a transaction is an action
performed in a database management
system.

transactional databases deal with both:
they store information about business
transactions using database transactions

oExamples of transactions
Purchase a product

Enroll in a course

Hire an employee

oData is in real-time
Reflects current state

How things are “now”

The Relational Database

oMost popular transactional database to collect and store
transaction data

oTwo primary goals: Minimize redundancy
Reduce errors

Less space required

oAn example
A series of tables with logical associations between

them

The associations (relationships) allow the data to

be combined

o

Product

ProductID

Name

Description

Price

Shipping

SalesRank

Review

ReviewID

ProductID

StarRating

Text

ReviewerName

Likes

Analyzing Transactional Data in Relational
Database

oCan be difficult to do from a
relational database

oHaving multiple tables is good for
storage and data integrity, but bad
for analysis
Tables must be “joined” together before

analysis can be done

oThe solution is the Analytical Data
Store

Relational databases
are optimized for

storage efficiency, not
retrieval

Analytical data stores
are optimized for

retrieval and
analysis, not storage
efficiency and data

integrity

Comparing Transactional and Analytical Data
Stores

Transactional Database Analytical Data Store

Based on Relational paradigm Based on Dimensional paradigm

Storage of real-time transactional
data

Storage of historical transactional
data

Optimized for storage efficiency and
data integrity

Optimized for data retrieval and
summarization

Supports day-to-day operations
Supports periodic and on-demand
analysis

Relational Data Modeling
ERD and Schema

The Entity Relationship Diagram (ERD)

oThe primary way of modeling a relational database

oAn Example of ERD

How to Draw ERD

oStep 1: Identify all entities and the corresponding attributes
Entities are nouns

Entity must have attributes (database is not an entity)

Entity must be connected to (at least) other entity

Entity must have primary key to uniquely identify it

• Last Name, Street, Product Name cannot be primary key

oStep 2: Identify relationship attributes/Implement relationships
Relationship is inferred from problem statement

Relationship attributes depends on both entities

oStep 3: Implement cardinality
Maximum cardinality: 1:1, 1:m, m:m

Minimum cardinality: 1 or 0

Normalization

oNormalization
Organizing data to minimize redundancy (repeated data)

It’s easier to make changes to the data

oIf an entity has multiple sets of related attributes, split
them up into separate entities
Vender phone, Vender name, Vender Address Vender (entity)

oEach attribute should be atomic – you can’t (logically) break
it up any further
Address State, City, Street, Zip

Draw Schema from an ERD

oSchema is a
serials of
connected tables

• Primary key field of “1” table put into
“many” table as foreign key field

1:many
relationships

• Create new table

• 1:many relationships with original tables

many:many
relationships

• Primary key field of one table put into
other table as foreign key field

1:1
relationships

1. Each entity becomes a table

2 Each entity’s attribute becomes a field (column)

3. Implement relationships between the tables

Tables = # Entities + # m:m relationships

Join Tables / De-normalized data

CustomerID FirstName LastName City State Zip

1001 Greg House Princeton NJ 09120

1002 Lisa Cuddy Plainsboro NJ 09123

1003 James Wilson Pittsgrove NJ 09121

1004 Eric Foreman Warminster PA 19111

Order
Number

OrderDate Customer
ID

101 3-2-2011 1001

102 3-3-2011 1002

103 3-4-2011 1001

104 3-6-2011 1004

Customer Table Order Table

Order Number OrderDate Customer ID Customer ID FirstName LastName City State Zip

101 3-2-2011 1001 1001 Greg House Princeton NJ 09120

102 3-3-2011 1002 1002 Lisa Cuddy Plainsboro NJ 09123

103 3-4-2011 1001 1001 Greg House Princeton NJ 09120

104 3-6-2011 1004 1004 Eric Foreman Warminster PA 19111

Order Table Customer Table

Extracting Data with SQL

Query a Single Table

SELECT [DISTINCT] expression(s)
FROM schema_name.table_name(s)
[WHERE condition(s)]
[GROUP BY expression(s)]
[ORDER BY expression(s) [ASC | DESC]] ;

The [] means the
element is optional

Element Description

expression(s) The column(s) or function(s) that you wish to retrieve.

schema_name.table_name(s) The table(s) that you wish to retrieve records from.

DISTINCT Optional. Return unique values.

WHERE condition(s) Optional. The conditions that must be met for the records to be selected.

GROUP BY expression(s) Optional. Organize the results by column values.

ORDER BY expression(s) Optional. Sort the records in your result set

Refer to Columns and Tables

oRefer to Columns
When query from a SINGLE table, ColumnName only will be ok

When query from MULTIPLE tables, column must be specified as
Tablename.columnName

It’s always safe to use Tablename.columnName

Columns should be separated with commas “,”

oRefer to Tables
In SQL, tables should always be specified as SchemaName.TableName

WHERE conditions

oThe following list of operators that can be used in the WHERE
clause

oWe can use AND/OR to

connect those operators

Operator Description

= Equal to

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

<> Not equal to

SQL Functions

oFive SQL functions
COUNT() - Returns the number of rows

MAX() - Returns the largest value

MIN() - Returns the smallest value

AVG() - Returns the average value

SUM() - Returns the sum

oTips about SQL functions
The SQL functions return ONE value

The SQL functions return MULTIPLE values (rows) when used with GROUP
BY

A SQL function is “similar to” a column when used after SELECT. It means,
we can treat a SQL function [e.g., COUNT(), AVG()] as a column

COUNT(*) returns all the rows

GROUP BY

oGROUP BY is used in conjunction with the aggregate
functions (COUNT, MAX, MIN, AVG, SUM), to group the
results by one or more columns

oExamples:

SELECT State, COUNT(*)
FROM orderdb.Customer

GROUP BY State;

State COUNT(*)

NJ 3

PA 1

SELECT ProductID, SUM(Quantity)
FROM orderdb.`Order-Product`

GROUP BY ProductID;

ProductID SUM(Quantity)

2251 7

2282 5

2505 12

Quotes and ORDER BY

oSimple (double) quotes
 For strings

Often refer to the value of a certain cell

• Column FirstName ‘Alvin’

• Column ProductName”Iphone 8 Plus”

oBack quotes
For schema name, table name and column name

When contains blank space or special characters such as `Order-Product`,
`Last Name`

 Or crash with SQL reserved words such as `Order`

