MIS2502: Data Analytics

The Information Architecture of an Organization

Jing Gong

jgong@temple.edu

http://community.mis.temple.edu/gong
What Do You Do With Data?

Gather

Retrieve

Store

Interpret
The Information Architecture of an Organization

- **Transactional Database**
 - Stores real-time transactional data
 - Called OLTP: Online transaction processing

- **Analytical Data Store**
 - Stores historical transactional and summary data
 - Called OLAP: Online analytical processing

Data entry → Transactional Database

Data extraction → Analytical Data Store

Data analysis
The Transactional Database

• Stores real-time, transactional data

In business, a transaction is the exchange of information, goods, or services.

For databases, a transaction is an action performed in a database management system.

Transactional databases deal with both: they store information about business transactions using database transactions

• Examples of transactions
 – Purchase a product
 – Enroll in a course
 – Hire an employee

• Data is in real-time
 – Reflects current state
 – How things are “now”
The Relational Paradigm

• How transactional data is collected and stored

• Primary Goal: Minimize redundancy
 – Reduce errors
 – Less space required

• Most database management systems are based on the relational paradigm
 – Oracle, Microsoft Access, SQL Server
The Relational Database
Online Retailer Example

- A series of tables with logical associations between them
- The associations (relationships) allow the data to be combined

<table>
<thead>
<tr>
<th>Product</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ProductID</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>Price</td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
</tr>
<tr>
<td>SalesRank</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Review</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ReviewID</td>
<td></td>
</tr>
<tr>
<td>ProductID</td>
<td></td>
</tr>
<tr>
<td>StarRating</td>
<td></td>
</tr>
<tr>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>ReviewerName</td>
<td></td>
</tr>
<tr>
<td>Likes</td>
<td></td>
</tr>
</tbody>
</table>
Why more than one table?

- Every review has an associated product
- Every product *can* have a review
- Products and reviews have a unique ID number
- Split the details off into separate tables

This is good because:

- Information is entered and stored once
- Minimizes redundancy
Analyzing transactional data

• Can be difficult to do from a relational database

• Having multiple tables is good for storage and data integrity, but bad for analysis
 – Tables must be “joined” together before analysis can be done

• The solution is the Analytical Data Store

Relational databases are optimized for storage efficiency, not retrieval

Analytical data stores are optimized for retrieval and analysis, not storage efficiency and data integrity
The Analytical Data Store

• Stores historical and summarized data
 – “Historical” means we keep everything
• Data is extracted from the transactional database and reformatted for the analytical data store

We’ll discuss this in much more detail later in the course!!
The Dimensional Paradigm

Data is stored like this around a business event...

...and can be summarized like this for analysis...

Product
- M&Ms
- Diet Coke
- Doritos
- Famous Amos

Store
- M&Ms
- Diet Coke
- Doritos
- Famous Amos

Sales
- Sales_ID
- Product_ID
- Store_ID
- Time_ID
- Quantity Sold
- Total Price

Time
- Time_ID
- Day
- Month
- Year

Product
- Product_ID
- Product_Name
- Product_Price
- Product_Weight

Store
- Store_ID
- Store_Address
- Store_City
- Store_State
- Store_Type

Data is stored like this around a business event...

...and can be summarized like this for analysis...
Dimensional Data and the Data Cube

...or it can be expanded in detail like this so that data mining (complex statistical analysis) can be done.

<table>
<thead>
<tr>
<th>Sales ID</th>
<th>Qty. Sold</th>
<th>Total Price</th>
<th>Prod. ID</th>
<th>Prod. Name</th>
<th>Prod. Price</th>
<th>Prod. Weight</th>
<th>Store ID</th>
<th>Store Address</th>
<th>Store City</th>
<th>Store State</th>
<th>Store Type</th>
<th>Time ID</th>
<th>Day</th>
<th>Month</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>1002</td>
<td></td>
</tr>
</tbody>
</table>
Comparing Transactional and Analytical Data Stores

<table>
<thead>
<tr>
<th>Transactional Data Store</th>
<th>Analytical Data Store</th>
</tr>
</thead>
<tbody>
<tr>
<td>Based on Relational paradigm</td>
<td>Based on Dimensional paradigm</td>
</tr>
<tr>
<td>Storage of real-time transactional data</td>
<td>Storage of historical transactional data</td>
</tr>
<tr>
<td>Optimized for storage efficiency and data integrity</td>
<td>Optimized for data retrieval and summarization</td>
</tr>
<tr>
<td>Supports day-to-day operations</td>
<td>Supports periodic and on-demand analysis</td>
</tr>
</tbody>
</table>
The agenda for the course

Weeks 1 through 5

Data entry

Transactional Database
Stores real-time transactional data

Weeks 6 through 9

Data extraction

Analytical Data Store
Stores historical transactional and summary data

Weeks 10 through 14

Data analysis

Data interpretation, visualization, communication