In-Class Exercise: Reading Clustering Output

The following is the output from a clustering analysis in SAS Enterprise Miner. It uses a customer information database from a bank to analyze distinct customer groups.

Five pieces of customer data were used to create the clusters:

CRSCORE – The customer's credit score. ATMAMT – The ATM withdrawal amount. INCOME – The customer's annual income.

HMVAL – The value of the customer's home.

AGE – The customer's age.

Here is the result of the clustering analysis. We first asked SAS to group the data into only three clusters:

Scenario #1: Three Clusters

Segment (Cluster) ID	Frequency (size) of cluster	Root Mean Squared Standard Deviation	Distance to Nearest Cluster	AGE	ATMAMT	CRSCORE	HMVAL	INCOME
1	12167	0.899116	11.99024	47.94117	1048.115	663.8654	110.8019	40.89706
2	699	2.390794	11.99024	59.94118	1041.21	713.2565	380.6111	63.16667
3	41	3.013538	12.61584	50.91176	47162.73	676.6585	116.1471	36.52941

Answer the questions about this output:

- 1. How many distinct customer groups (segments) are there?
- 2. Explain how the customers in cluster 1 are different from cluster 2?
- 3. What aspect of the customer data most differentiates cluster 1 from cluster 3?
- 4. Which cluster has the highest cohesion? In practical terms, what does that mean?

<<NEXT PAGE>>

We asked SAS to take the same data and split the customers into 10 groups instead of three.

		Root Mean						
Segment (Cluster) ID	Frequency (size) of cluster	Squared Standard Deviation	Distance to Nearest Cluster	AGE	ATMAMT	CRSCORE	HMVAL	INCOME
1	678	0.777343	1.85956	58.82796	1633.386	686.0015	145.6862	63.20502
2	2027	0.735691	1.85956	39.45261	809.9025	653.7394	135.0763	86.90867
3	409	1.530902	10.26644	53.4	130.4035	673.1138	535.8	70.4
4	36	1.34275	6.257339	52.25	34061.55	684.7778	120.1071	33.78571
5	4552	0.569064	2.052375	39.26974	712.3268	639.399	104.8276	30.76862
6	313	0.961229	3.098761	48.26953	11286.11	668.1661	114.6107	41.84733
7	4	2.590545	8.522712	38	100937	684	110.6667	40.33333
8	313	1.495353	7.324831	57.6	1028.864	605.8506	305.75	70.3125
9	4569	0.590474	2.052375	59.24229	758.1439	699.227	101.8305	28.5347
10	6	1.59657	8.522712	51.33333	70070.36	654.8333	110	44.33333

Scenario #2: Ten Clusters

Now answer the following questions:

- 5. Is the root mean squared standard deviation of these clusters higher or lower than they were in the three cluster scenario? Why?
- 6. Is the distance to the nearest cluster higher or lower than in the three cluster scenario? Why?
- 7. Which scenario (#1 or #2) has higher cohesion among its clusters?
- 8. Which scenario (#1 or #2) has higher separation between its clusters?