In-class Activity #5: Working with SQL, Part 1
Getting Information out of a Database
	Submission Instructions
[bookmark: _GoBack]Submit your solutions for Part 2 of this exercise as a word or pdf file through Canvas>Assignments> In-class Activity.

To do this exercise, you will be working with a movie rental database. The schema for this database is provided on the accompanying document. All of the tables are in a schema called simply “moviedb” (not m0moviedb, m1moviedb, etc.). You can’t write to any of the tables – you can only use SELECT statements to read from them (so don’t worry about causing any damage).
Spend some time looking at the schema carefully. The field names are pretty self-explanatory. For example, here are three tables:
[image:]
You can see that a film has a title, description, rating, and length (among other things). You can also see that an actor has a first name and a last name. The film_actor table implements the many-to-many relationship between actor and film (i.e., a film can have more than one actor, and an actor can be in more than one film). You’ll also notice that data types are listed for each field, but they should be pretty obvious – for example, first_name is a VARCHAR because it is a string value.
Part 1: Try out some simple queries
(1) A simple statement
In the Query 1 pane, type the following (make sure you do not have any typo). And then click the Execute SQL Script button (the lightning bolt):
[image:]
In the output tab, you’ll see this:
[image:]
(2) A “join” statement
Now try a join. Enter and run the following query:
SELECT DISTINCT film.title
FROM moviedb.actor, moviedb.film, moviedb.film_actor
WHERE actor.actor_id = film_actor.actor_id
AND film.film_id = film_actor.film_id
AND actor.first_name = 'Penelope';`You’ll get the list of films starring actors with the first name of “Penelope”:
[image:]

Make sure you understand what’s going on here:
	SELECT DISTINCT film.title

	SELECTing unique film titles (no duplicates)

	FROM moviedb.actor, moviedb.film, moviedb.film_actor

	In order to find out what films starred which actors, we need to associate actor and film. We do that by joining actor, film, and the tables in-between (in this case, that’s film_actor). If this isn’t clear to you, check the schema on page 1 of this document.

	WHERE actor.actor_id = film_actor.actor_id
AND film.film_id = film_actor.film_id

	We look for primary/foreign key fields in the connected tables and set them equal to each other in the WHERE clause. In this database, primary and foreign key fields will have the same names – this makes them easier to find.

	AND actor.first_name = 'Penelope';

	Once we join the tables, we will have all actors in all movies. We just ones the ones named “Penelope,” so we apply this last restriction.

(3) A “subselect” statement
Finally, let’s do a query with a subselect:
SELECT title, replacement_cost
FROM moviedb.film
WHERE replacement_cost 	= (SELECT MAX(replacement_cost)
 FROM moviedb.film);
This will return movies with the highest replacement cost (there are 53 of them), here’s the first few:
[image:]
Here’s what’s going on:
	SELECT title, replacement_cost
FROM moviedb.film
	SELECTing the title and replacement cost of the movies from our film table

	WHERE replacement_cost =

	Filtering based on replacement cost. We only want the movies where the cost is equal to its highest value

	(SELECT MAX(replacement_cost)
FROM moviedb.film)
	We get the highest value with another SELECT statement that gets the MAXimum replacement cost from the film table

Part 2: Write queries on your own (Submit your solutions for Part 2 only on Canvas)
Create the SQL SELECT query to answer each of the questions below. Some of the questions can be answered by querying one table; others will require joining multiple tables to get the answer.
For each question you’ll need to write down (1) the SQL query (which you can copy and paste it from SQL Workbench) and (2) the answer you get as a result of the query (which you can copy and paste from the results).

1. (a) What is the title and length of the longest movie in the database (assume there’s only one with the longest value and use LIMIT)?
Display: title and length

(b) Now assume there could be more than one movie with the longest value and use a subselect with the MAX() function to find the movies with the greatest length.
Display: title and length

2. Are R movies, on average, longer than PG movies? Prove it!
Display: rating and average length
(HINT: Use GROUP BY)

3. How many movies are in French?
Display: number of movies
(HINT #1: The name field in the language table contains the film language names.
HINT #2: Surround the table name language with back quotes.)

4. In which films did Sandra Peck star (only return the first five)
Display: title

5. How many movies has the customer Adam Gooch rented?
Display: number of movies
(HINT: You need to use the customer table and the rental table.)

6. How many customers have a last name that starts with ‘A’?
Display: number of customers
Hint #1: You can use LIKE with a WHERE clause, like this:
	SELECT fieldname FROM tablename WHERE fieldname LIKE value
	LIKE looks for close matches, not exact ones (as with the = operator)
Hint #2: You can use % as a wildcard value.
	So LIKE ‘ap%’ will match with “apple,” “application,” “apex,” etc.

7. How many different ratings are there in Film table?
Display: number of different ratings
2

2

image4.png
tte

|ACADEMY DINOSALR.
|AMADELS HOLY.
|ANACONDA CONFESSIONS
ANGELSLIFE
|ARMAGEDDON LOST
|ARMY FLINTSTONES
[BASIC EASY

image5.png
it replacement_cost

|ARABIA DOGMA 29
BALLROOMMOCKINGBIRD ~ 29.99
BLINDNESS GUN 29
[BONNIE HOLOCAUST 29
(CHARIOTS CONSPIRACY 29.99
|CLOCKWORK PARADISE. 29
‘CLYDE THEORY 29

|CRUELTY UNFORGIVEN 29.99

image1.png
moviedb Schema

actor_id

film_id T actor_id
title _< film_id
description last_update

release_year

language_id

original_language
_id
rental_ducation

inventory id length
film_id replacement_cost
store_id rating
last_update spcial_features
last_update
rental id | customer |
customer _id
rental_date —
B B store_id
inventory_id -
- first_name
customer_id
last_name
return_date =
emai
staff_id .
address_id
last_update -
active

create_date

last_update

language id
name

last_update

first_name

last_name

last_update

image2.png
EEFFAOCIBI [@ | Limitto 1000r ~ | ¥ | ¥ Q (1 [
18 SELECT title, length FROM moviedb.film WHERE length<=00;|
.

image3.png
| ResultGrid |] 4% Fiter Rowis:

it

b |AcADEMY DINOSAUR
|ACE GOLDFINGER
|ADAPTATION HOLES
|AIRPLANE SIERRA
|AIRPORT POLLOCK
|ALADDIN CALENDAR
(ALTEN CENTER

| ALONE TRIP

BEDERBEES
i

