In-Class Exercise: SQL

To do this exercise, you will be working with a movie rental database. The schema for this database is
provided on the accompanying document. All of the tables are in a schema called “moviedb.” You can’t
write to any of the tables — you can only use SELECT statements to read from them (so don’t worry
about causing any damage).

Spend some time looking at the schema carefully. The field names are pretty self-explanatory. For
example, here are two tables:

r_‘\
film_id SMALLINT
5 title VARCHAR(255)
» description TEXT
»release_year YEAR
@ language_id TINYINT
<»original _language_id TI... ———————————
rentd _duration TINYINT _
> rentd_rate DECIMAL(4,2) actor_id SMALLINT
. length SMALLINT » first_name VARCH...
»replacement_cost DECT... ?last_name VARCH...
. rafing ENUM(...) »last_update TIME. ..
» spedal _features SET(...)
» last_update TIMEST AMP L, T

actor_id SMALLINT
film_id SMALLINT
» last_update TIME...

>
T

You can see that a film has a title, description, rating, and length (among other things). You can also see
that an actor has a first name and a last name. The film_actor table implements the many-to-many
relationship between actor and film (i.e., a film can have more than one actor, and an actor can be in
more than one film). You’ll also notice that data types are listed for each field, but they should be pretty
obvious — for example, first_name is a VARCHAR because it is a string value.

In MySQL Workbench, open the connection to the classl server using your username and password.
Click on the “moviedb” schema to see the list of tables.

Now try a simple query. In the SQL File pane, type the following:

BH|ZyaOD| g = |Q (1) (3
1 e SELECT film.title FROM moviedb.film

And then click the Execute SQL Script button (the lightning bolt):

Database Pl

FORXY:

And you’ll see a list of all movie titles (this is just the first few):

title

p |ACADEMY DINOSAUR
ACE GOLDFINGER
ADAPTATION HOLES
AFFAIR PREJUDICE
AFRICAN BGG
AGENT TRUMAN
AIRPLAME SIERRA
AIRPORT POLLOCK
ALABAMA DEVIL
ALADDIN CALENDAR
ALAMO VIDEOTAFPE
ALASKA PHANTOM

So now, on the following page you’re going to create a series of SQL SELECT queries to answer questions
about the information in this database. Some of the questions can be answered by querying one table;
others will require joining multiple tables to get the answer.

For each question you’ll write down the SQL query (which you can copy and paste it from SQL
Workbench) and the answer you get as a result of the query (which you can copy and paste from the
results).

1. Which actors have the first name of “Nick”?

2. How many G movies are in the database?

3. What s the length of the film “Apollo Teen”

4. How many customers are the in the movie database?

5. Are R movies, on average, longer than PG movies? Prove it!

6. How many movies are in English?

7. In which films did Bob Fawcett star?
(create a query to get them all, but only list the first five)

8. How many movies has the customer Melissa King rented?

FOR AN EXTRA CHALLENGE!
How many customer have a first name that starts with ‘W’?
Two hints:

1) You can use LIKE with a WHERE clause, like this:

SELECT fieldname FROM tablename WHERE fieldname LIKE value

LIKE looks for close matches, not exact ones like = does.

n u ” u

2) You can use % as a wildcard value. So LIKE ‘ap%’ will match with “apple,” “application,” “apex,” etc.

Customer Data

/ city_id SMALLINT
> city VARCHAR(50)
% country_id SMALLINT

7 country_id SMALLINT
2 country VARCHAR(50)

Inventory

/ customer_id SMALLL...

@ store_id TINYINT ¢ film_id SMALLINT

7 last_update TIMEST...

= first_name VARCHA...
= last_name VARCHA...
> email VARCHAR(50)
< address_id SMALLINT
< active BOOLEAN
 create_date DATETL...

> ==t

< title VARCHAR(255)

> description TEXT

> release_year YEAR

@ language_id TINYINT

< original_language_id TI...
* rental_duration TINYINT

>l—

>l—

¢ film_id SMALLINT
¢ category_id TINYI...
< last_update TIME...

>
——
7 (oguane
i language_id TINY...
» name CHAR(20)
2 last_update TIME...

>
"

|
|
|
|
|
> last_update TIMEST... | > last_update TIMEST... * rental_rate DECIMAL(4,2)
> ! address_id SMALLINT | = — —: ———< > length SMALLINT
S
+ address VARCHAR(50) | | < replacement_cost DECI...
: > address2 VARCHAR(... | | | > rating ENUM(...)
| 2 district VARCHAR(20) : : > special_features SET(...)
S —I< 5 city_id SMALLINT === > last_update TIMESTAMP | |
> postal_code VARCH... :
2 phone VARCHAR(20) | >
> last_update TIMEST... : >
"
R —
> |
—— |
* | i
| | | -
Bu: Customer related data : : : |
| | | i
Lo ' inventory
| |
| : | 7 inventory_id MEDL...
| | .
/ staff_id TINYINT | I_A ¥ & film_id SMALLINT

< first_name VARCH...
< last_name VARCH...
“» address_id SMALL...
> picture BLOB
 email VARCHAR(50) r
& store_id TINYINT
> active BOOLEAN
 username VARCH...
> password VARCHA...
= last_update TIME...

>
"

Data required to run the business

/ store_id TINYINT

& store_id TINYINT
< last_update TIME...

& manager_staff_id ...
» address_id SMALL...
 last_update TIME...

¢ payment_id SMAL...
< customer_id SMAL...
& staff_id TINYINT

< rental_id INT

> amount DECIMAL(...
 payment_date DA...
» last_update TIME...

/ rental_id INT
< rental_date DATE...

===

[P

& staff_id TINYINT
*» last_update TIME...

>

% inventory_id MEDL...
@ customer_id SMAL...
I = return_date DATE...

>
"

Movie database = P
——

¢ film_id SMALLINT
< title VARCHAR(255)
> description TEXT

>
e ——

¢ category_id TINYI...
2 name VARCHAR(25)
< last_update TIME...

7 actor_id SMALLINT
< first_name VARCH...
< last_name VARCH...
< last_update TIME...

I ‘V

¢ actor_id SMALLINT
¢ film_id SMALLINT
= last_update TIME...

>
"

