
Information Technology Audit & Cyber Security

Systems & Infrastructure

Lifecycle ManagementStructural Modeling

1-2

OBJECTIVES

demonstrate the differences between object diagrams and class diagrams,

explain the three types of operations possible in class diagrams,

illustrate how associations are represented in class diagrams,

show how associative classes are drawn in class diagrams, and

show how generalization and aggregation are represented in class diagrams

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-3

INTRODUCTION

Functional models represent system behavior

Structural models represent system objects and their
relationships:

People

Places

Things

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-4

STRUCTURAL MODELS

Main goal: to discover the key data contained in the problem
domain and to build a structural model of the objects

Problem Domain

(Analysis)

Solution Domain

(Design)

Structural

Modeling

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-5

THINGS IN THE PROBLEM DOMAIN

Problem domain—the specific area (or domain) of the users’
business need that is within the scope of the new system.

“Things” are those items users work with when accomplishing tasks
that need to be remembered

Examples of “Things” are products, sales, shippers, customers,
invoices, payments, etc.

These “Things” are modeled as domain classes or data entities

In this course, we will call them domain classes. In a database
course you call them data entities

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-6

TWO TECHNIQUES TO IDENTIFY “THINGS”

Brainstorming Technique

Use a checklist of all of the usual types of things typically found and
brainstorm to identify domain classes of each type

Noun Technique

 Identify all of the nouns that come up when the system is described and
determine if each is a domain class, an attribute, or not something we need
to remember

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-7

BRAINSTORMING TECHNIQUE
 Are there any…

Things

Tangible
Roles

Played

Organizational

Units
Devices

Sites or

Locations
Events

Airplane
Book
Vehicle
Document
Form

Employee
Customer
Doctor
Patient
User
Sys Admin

Division
Departmen
t
Section
Task Force
Workgroup

Sensor
Timer
Controller
Machine
Sorter
Printer
Container

Warehouse
Office
Factory
Store
Desktop

Flight
Call
Logon
Logoff
Contract
Purchase
Order
Payment

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-8

BRAINSTORMING TECHNIQUE STEPS:

1.Identify a user and a set of use cases

2.Brainstorm with the user to identify things involved when carrying out the use case—
that is, things about which information should be captured by the system.

3.Use the types of things (categories) to systematically ask questions about potential
things, such as the following:
1.Are there any tangible things you store information about?

2.Are there any locations involved?

3.Are there roles played by people that you need to remember?

4.Continue to work with all types of users and stakeholders to expand the
brainstorming list

5.Merge the results, eliminate any duplicates, and compile an initial list

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-9

NOUN TECHNIQUE

A technique to identify problem domain classes (things) by finding, classifying, and
refining a list of nouns that come up in in discussions or documents

Popular technique. Systematic.

Does end up with long lists and many nouns that are not things that need to be stored
by the system

Difficulty identifying synonyms and things that are really attributes

Good place to start when there are no users available to help brainstorm

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-10

NOUN TECHNIQUE EXAMPLE
Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-11

NOUN TECHNIQUE STEPS:
1.Using the use cases, actors, and other information about the system— including inputs and outputs—identify all nouns.

 For the RMO CSMS, the nouns might include customer, product item, sale, confirmation, transaction, shipping, bank, change request, summary report, management,

transaction report, accounting, back order, back order notification, return, return confirmation…

2.Using other information from existing systems, current procedures, and current reports or forms, add items or categories of information

needed.

 For the RMO CSMS, these might include price, size, color, style, season, inventory quantity, payment method, and shipping address.

3.As this list of nouns builds, refine it. Ask these questions about each noun to help you decide whether you should include it:

 Is it a unique thing the system needs to know about?

 Is it inside the scope of the system I am working on?

 Does the system need to remember more than one of these items?

Ask these questions to decide to exclude it:

 Is it really a synonym for some other thing I have identified?

 Is it really just an output of the system produced from other information I have identified?

 Is it really just an input that results in recording some other information I have identified?

Ask these questions to research it:

 Is it likely to be a specific piece of information (attribute) about some other thing I have identified?

 Is it something I might need if assumptions change?

4. Create a master list of all nouns identified and then note whether each one should be included, excluded, or researched further.

5. Review the list with users, stakeholders, and team members and then define the list of things in the problem domain.

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-12

DOMAIN CLASSES
Attribute— describes one piece of information about each
instance of the class
Customer has first name, last name, phone number

Identifier or key
One attribute uniquely identifies an instance of the class. Required for
data entities, optional for domain classes. Customer ID identifies a
customer

Compound attribute
 Two or more attributes combined into one structure to simplify the
model. (E.g., address rather than including number, street, city, state,
zip separately). Sometimes an identifier or key is a compound
attribute.

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-13

ATTRIBUTES AND VALUES
Class is a type of thing. Object is a specific instance of the class.
Each instance has its own values for an attribute.

All Customers have attributes:All Customers have attributes:

Customer ID

First Name

Last Name

Home Phone

Work Phone

All Customers have attributes: Each customer has a value for each attribute:

Customer ID

First Name

Last Name

Home Phone

Work Phone

All Customers have attributes: Each customer has a value for each attribute:

Customer ID 101 102 103

First Name John Dagny Henry

Last Name Galt Taggart Reardon

Home Phone 555-9182 423-1298 874-1297

Work Phone 555-3425 423-3419 874-8546

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-14

ASSOCIATIONS AMONG THINGS…
Association– A naturally occurring relationship between classes
(UML term)

Mr. Smith

“works in” Accounting

Department
Order # 1043 “is placed by”

Red Shirt Jeans

“contains” “contains”

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-15

JUST TO CLARIFY…
Called association on class diagram in UML

 Multiplicity is term for the number of associations between classes: 1 to 1 or 1 to many

 We are emphasizing UML in this unit

Called relationship on ERD in database class

 Cardinality is term for number of relationships in entity relationship diagrams: 1 to 1 or 1 to many

Associations and Relationships apply in two directions

 Read them separately each way

 A customer places an order

 An order is placed by a customer

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-16

MIN AND MAX MULTIPLICITY
Associations have minimum and maximum constraints

 Minimum is zero

 The association is optional

 Minimum is at least one

 The association is mandatory

Mr. jones has placed no
order yet, but there might
be many placed over time

A particular order is placed
by Mr. Smith. There can’t
be an order without stating
the customer.

An order contains at least
an item, but could have
many items

Multiplicity is zero or more-
optional relationship

Multiplicity is one and only
one-mandatory relationship

Multiplicity is one or more-
mandatory relationship

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-17

TYPES OF ASSOCIATIONS

Binary Association

 Associations between exactly two different classes

 Course Section includes Students

 Members join Club

Unary Association (recursive)

 Associations between two instances of the same class

 Person married to person

 Part is made using parts

Ternary Association (three)

N-ary Association (between n)

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-18

SEMANTIC NET
Shows instances and how they are linked

 Example:

John

Mary

Sara

Order 1

Order 2

Item 1

Item 2

Item 1

Item 2

Item 3

Order 2

Item 1

Item 2

Item 3

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-19

DOMAIN MODEL CLASS DIAGRAM
Class

 A category of classification used to describe a collection of objects

Domain Class

 Classes that describe objects in the problem domain

Class Diagram

 A UML diagram that shows classes with attributes and associations (plus methods if it models

software classes)

Domain Model Class Diagram

 A class diagram that only includes classes from the problem domain, not software classes so no methods

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-20

DOMAIN CLASS NOTATION
Domain class has no methods

Class name is always capitalized

Attribute names are not capitalized and use camelback notation (words run together
and second word is capitalized)

Customer

custNumber

Name

billAddress

homePhone

officePhone

The name of the class

Attributes: all objects in

the class have a value

for each of these

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-21

SIMPLE DOMAIN MODEL CLASS DIAGRAM
From the Semantic Net (shown previously)
 A customer places zero or more orders

 An order is placed by exactly one customer

 An order consists of one or more order items

 An order item is part of exactly one order

Customer

custNumber

Name

billAddress

homePhone

officePhone

Order

orderID

OrderDate

amount

OrderLineItem

itemID

quantity

price

1 0..* 1 1..*

places

has

contains

Is on

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-22

UML NOTATION FOR MULTIPLICITY

Zero or one

(optional)

One and only

one (mandatory)

One and only

one alternate

(mandatory)

Zero or more

(optional)

Zero or more

alternate

(optional)

One or more

(mandatory)

0..1 0..*

1 *

1..1 1..*

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-23

DOMAIN MODEL CLASS DIAGRAM

Customer

custNumber

fullName

billAddress

homePhone

officePhone

Account

AccountID

accountType

dateOpened

balance

Branch

branchID

managerName

branchLocation

mainPhone

Transaction

transID

transData

transType

transAmount

1 1..* 0..* 1

1

1..*

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-24

DOMAIN MODEL CLASS DIAGRAM

Course

ccourseNumber

title

creditHours

CourseSection

sectionNumber

startTime

roomNumber

Student

studentID

name

major

1

0..*

0..* 0..*

CourseEnrollment

grade

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-25

GENERALIZATION AND SPECIALIZATION RELATIONSHIPS

Generalization/Specialization

 A hierarchical relationship where subordinate classes are special types of the superior classes. Often
called an Inheritance Hierarchy

Superclass

 the superior or more general class in a generalization/specialization hierarchy

Subclass

 the subordinate or more specialized class in a generalization/specialization hierarchy

Inheritance

 the concept that subclasses inherit characteristics of the more general superclass

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-26

GENERALIZATION/SPECIALIZATION EXAMPLE

Truck

Car

Tractor

MotorVehicle

SprotsCar

Sedan

SUV

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-27

GENERALIZATION / SPECIALIZATION EXAMPLE

Customer Branch

Transaction

1 1..* 0..* 1

1

1..*

Savings

InterestRate

Checking

checkStype

minBalance

Abstract

Concrete

Account

accountID

Dateopened

balance

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-28

WHOLE PART RELATIONSHIPS
Whole-part relationship— a relationship between classes where one class is part of
or a component portion of another class

▪ Aggregation— a whole part
relationship where the component
part exists separately and can be

removed and replaced (UML
diamond symbol, next slide)

– Computer has disk storage devices

– Car has wheels

▪ Composition— a whole part
relationship where the parts can no

longer be removed (filled in
diamond symbol)

– Hand has fingers

– Chip has circuits

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-29

WHOLE PART RELATIONSHIPS EXAMPLE
Computer

Monitor

Storage

Keyboard

Processor

MainMemory

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-30

RELATIONSHIPS
There are actually three types of relationships in class
diagrams

Association Relationships
 These are associations discussed previously, just like ERD relationships

Whole Part Relationships
One class is a component or part of another class

Generalizations/Specialization Relationships
 Inheritance

Try not to confuse relationship with association

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-31

DESIGN CLASS DIAGRAMS

stereotype a way of categorizing a model element by its
characteristics, indicated by guillemets (<< >>)

persistent class an class whose objects exist after a system is shut down
(data remembered)

entity class a design identifier for a problem domain class (usually
persistent)

boundary class or view class a class that exists on a system’s
automation boundary, such as an input window form or Web page

control class a class that mediates between boundary classes and
entity classes, acting as a switchboard between the view layer and
domain layer

data access class a class that is used to retrieve data from and send
data to a database

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class

Diagrams

CRC Cards

Design Goals

1-32

DESIGN CLASS DIAGRAMS

<< Stereotype >>

Class Name::Parent Class

<< Entity >>

AccountHolder::Customer

Attribute List
Visibility name:type-expression = initial-value {property}

- SocialSecurityNumber:string=000-00-0000 {key}

+ Age:Integer

Method List
Visibility name (parameter list) : return type-expression

+ ValidateSSN(SocialSecurityNumber) : Boolean

Underline “static” – AKA, applies

to the entire class, not a specific

object.

An abstract class must be

italicized. Concrete classes

are not.

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class

Diagrams

CRC Cards

Design Goals

1-33

NAVIGATION VISIBILITY

 The ability of one object to view and interact with another object

 Accomplished by adding an object reference variable to a class.

 Shown as an arrow head on the association line—customer can find and interact with sale because it
has mySale reference variable

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class

Diagrams

CRC Cards

Design Goals

1-34

NAVIGATION VISIBILITY GUIDELINES

One-to-many associations that indicate a superior/subordinate
relationship are usually navigated from the superior to the
subordinate

Mandatory associations, in which objects in one class can’t exist
without objects of another class, are usually navigated from the
more independent class to the dependent

When an object needs information from another object, a
navigation arrow might be required

Navigation arrows may be bidirectional.

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class

Diagrams

CRC Cards

Design Goals

1-35

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class

Diagrams

CRC Cards

Design Goals

FIRST CUT DESIGN CLASS DIAGRAM
Proceed use case by use case, adding to the diagram

Pick the domain classes that are involved in the use case (see
preconditions and post conditions for ideas)

Add a controller class to be in charge of the use case

Determine the initial navigation visibility requirements using the
guidelines and add to diagram

Elaborate the attributes of each class with visibility and type

Note that often the associations and multiplicity are removed from
the design class diagram as in text to emphasize navigation, but
they are often left on

1-36

DESIGNING WITH CRC CARDS

CRC Cards—Classes, Responsibilities, Collaboration Cards

OO design is about assigning Responsibilities to Classes for how they
Collaborate to accomplish a use case

Usually a manual process done in a brainstorming session

 3 X 5 note cards

 One card per class

 Front has responsibilities and collaborations

 Back has attributes needed

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-37

CRC CARD EXAMPLE

Customer

Update name
Update address
Request purchase
history
Process sale
Make payments

Sale (ID)
Payment (ID)

customerNumber
customerName
customerAddress
shippingAddress
dayPhone
nightPhone

Class Name Collaborating classes

with return data

Responsibilities
Attributes on back

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-38

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

CRC CARDS PROCEDURE
Because the process is to design, or realize, a single use case, start with a set of
unused CRC cards. Add a controller class (Controller design pattern).

Identify a problem domain class that has primary responsibility for this use case
that will receive the first message from the use case controller. For example, a
Customer object for new sale.

Use the first cut design class diagram to identify other classes that must collaborate
with the primary object class to complete the use case.

Have use case descriptions and SSDs handy

Start with the class that gets the first message from the controller. Name the
responsibility and write it on card.

Now ask what this first class needs to carry out the responsibility. Assign other
classes responsibilities to satisfy each need. Write responsibilities on those cards.

Sometimes different designers play the role of each class, acting out the use case
by verbally sending messages to each other demonstrating responsibilities

Add collaborators to cards showing which collaborate with which. Add attributes to
back when data is used

Eventually, user interface classes or even data access classes can be added

1-39

COUPLING

A quantitative measure of how closely related classes are linked (tightly or
loosely coupled)

 Two classes are tightly coupled of there are lots of associations with another
class

 Two classes are tightly coupled if there are lots of messages to another
class

 It is best to have classes that are loosely coupled

 If deciding between two alternative designs, choose the one where overall
coupling is less

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-40

COHESION

A quantitative measure of the focus or unity of purpose within a single class
(high or low cohesiveness

One class has high cohesiveness if all of its responsibilities are consistent and
make sense for purpose of the class (a customer carries out responsibilities
that naturally apply to customers)

One class has low cohesiveness if its responsibilities are broad or makeshift

 It is best to have classes that are highly cohesive

 If deciding between two alternative designs, choose the one where overall
cohesiveness is high

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-41

PROTECTION FROM VARIATIONS

A design principle that states parts of a system unlikely to change are
separated (protected) from those that will surely change

 Separate user interface forms and pages that are likely to change from
application logic

 Put database connection and SQL logic that is likely to change in a
separate classes from application logic

Use adaptor classes that are likely to change when interfacing with other
systems

 If deciding between two alternative designs, choose the one where there is
protection from variations

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-42

INDIRECTION

A design principle that states an intermediate class is placed between two
classes to decouple them but still link them

A controller class between UI classes and problem domain classes is an
example

 Supports low coupling

 Indirection is used to support security by directing messages to an
intermediate class as in a firewall

 If deciding between two alternative designs, choose the one where
indirection reduces coupling or provides greater security

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

1-43

OBJECT RESPONSIBILITY

 A design principle that states objects are responsible for carrying out system
processing

 A fundamental assumption of OO design and programming

 Responsibilities include “knowing” and “doing”

 Objects know about other objects (associations) and they know about their
attribute values. Objects know how to carry out methods, do what they are asked
to do.

 Note that CRC cards and the design in the next chapter involve assigning
responsibilities to classes to carry out a use case.

 If deciding between two alternative designs, choose the one where objects are
assigned responsibilities to collaborate to complete tasks (don’t think
procedurally).

Introduction

Identify Classes

Domain Class Model

Relationships

Design Class Diagrams

CRC Cards

Design Goals

