
Unit #10
MIS5203

System Development

Agenda

• Distributed Systems
• File Server Architecture

• Client/Server Architecture

• N-Tier Architecture

• Thick versus Thin clients

• Cloud Architecture

• Service Oriented Architecture (SOA)

• Example Cloud-based N-Tier SOA Application Development System

• Control Stages and Objectives

Distributed Systems
Systems for Local Area Networks (LANs)

LAN: the cabling, hardware, and software used to connect workstations, computers, and file servers located in a confined
geographical area

• Typically within one building or campus

Systems that operate in a local-area networked environment are generally called client/server systems

Some computers in the network are servers, providing some kind of service (such as data) to the clients

The system’s human users are typically sitting at client computers, and share the common serviced provided by server
computers

LAN systems usually are either based on either:
• LAN-based file server architecture
• Client/server architecture

Note: we are not talking about the Web, but a local area network (LAN) such as that used by a single
department in a company

University computer labs often configured as a LAN. In an environment like this, there will often be a computer
that provides file and print resources for the other computers in the network

File Server architecture

• File server: a device that manages
file operations and is shared by
each client PC attached to a LAN

• The simplest configuration
• Applications and data control take

place on the client computers.

• The file server simply holds shared
data

Limitations of File Servers
• Excessive data movement

• Entire dataset must be transferred, instead of individual data records

• Need for powerful client workstations
• Each client workstation must devote memory and computational resources to

run a complete standalone application

• Decentralized data control
• Data file concurrency control, recovery, and security are complicated

Client-Server Architecture

LAN-based computing environment in which
• A central database server or engine performs all database commands sent to

it from client workstations

• Application programs on each client concentrate on user interface functions

Increased efficiency and control over File server

• Server only sends specific data, not entire files,
which saves on network bandwidth

• Computing load is carried out by the server
• Increasing security
• Decreasing computing demand on the clients

Some differences between File Server and
Client/Server Architectures

Client/Server System Architecture

• Application processing is divided between client and server
• Client manages the user interface

• Database server is responsible for data storage and query processing

N-Tier Architecture

N-Tier Applications

Where’s the programming code?

N-Tier Applications

“Thin” versus “Thick” Client

The degree to which application processing takes place at the client vs.
the server

• Web based systems are often thought of as having thin clients
• Because the only processing is what the browser does

• Presentation and user interface, with business logic

• Data processing taking place at the server

• But many feature-rich application programs run within the client, making
periodic data requests to the server

• These clients are “fatter” It’s all a matter of degree

Cloud Computing

• Provision of applications over the Internet

• Customers do not have to invest in the hardware and software
resources needed to run and maintain the applications, but are
charged on a per-use basis

• Amazon Example:
• Amazon Web Services (AWS)

• Simple Storage Service (S3)

• Elastic Compute Cloud (EC2)

Cloud Computing – Service Models

• Infrastructure as a Service (IaaS):
provides basic processing, storage,
and network capabilities

• Platform as a Service (PaaS):
customers run their own
applications, using tools provided
by the service provider.

• Software as a Service (SaaS):
applications are provided by the
service provider • IaaS is most basic service model

• PaaS will include infrastructure along with platform
• SaaS will typically include both the platform and

infrastructure on which the application runs

Private versus Public Clouds

Service Oriented Architecture (SOA)

A software architecture
• Business processes broken down into

individual components (services)

• Designed to achieve desired results for
the service consumer

• Application

• Another service

• Person (user)

Principles:
• Reusability

• Interoperability

• Componentization
Using SOA, multiple applications can invoke multiple
services

N-Tier Applications using SOA in the cloud

Agenda

✓Distributed Systems
✓File Server Architecture

✓Client/Server Architecture

✓N-Tier Architecture

✓Thick versus Thin clients

✓Cloud Architecture

✓Service Oriented Architecture (SOA)

• Example Cloud-based N-Tier SOA Application Development System

• Control Stages and Objectives

Development Phases – An example…

Four RAD / Agile methodology phases for developing applications:
1. Initiation – UX Design and Technical Infrastructure Setup
2. Construction Iterations – Develop and assure the quality of the system
3. Transition – User Acceptance Testing
4. Production – Deploy the application

Development Phases
An example…

Example milestones scheduling notable development accomplishments
included in the plan and distributed among the phases:

1. Initiation
• Milestone 0 – Development Infrastructure in Place
• Milestone 1 – Functional Specifications Complete, Design Document and Application

Configuration Guide Drafted

2. Construction Iterations
• Milestone 2 – Landing Page, Queries and Results Page
• Milestone 3 – Simple Query Drill-down Implemented and Test Plan Complete
• Milestone 4 – Data Pre-Processor and Dynamic Display Implemented
• Milestone 5 – Entity Detail Page and Data Stewardship Implemented
• Milestone 6 – Standalone Interactive Viewer Implemented

3. Transition
• Milestone 7 – Code Complete, User Acceptance Testing, Test Final Delivery Package

4. Production
• • Milestone 8 – Application Approved and Delivered

Development Infrastructure Example…

Document Sharing Wiki
• Central content management website for

organizing, sharing, accessing and providing
feedback on documents, meeting notes,
requirements and design documents, and project
plans and artifacts

• Confluence will be maintained by the development
team managers to provide a common place for
finding and accessing the current set of project
requirements, designs and plans.

• Stash or the more recent Bitbucket is used for
serving as a repository for tracking revision history
of documents,

• “Confluence can be linked to Jira to provide project
management with reports that provide insight into
the status of development work and issue creation”

Source Control

• A commercial off the shelf (COTS)
proprietary web-based hosting
repository service for distributed access
and version control of programming
code

• Enables maintaining versioned
shareable software code and design
artifacts with check-in/check-out and
maintenance capabilities

Issue Tracking System
• Enables organization, prioritization, triage, planning

and tracking resolution of issues and project tasks

• Provides visibility of issues and tasks on “To Do”,
“In Progress”, “For Review”, and “Done lists”

• Integration of Issue Tracking and Source Control
Systems enables end-to end traceability of issue
and tasks through resolution to source code
implementation and issue to source code resolution

• Change tracking and control enables visualizing and
reporting on revisions and changes made to source
code and documents by project teammates

• Enables linking software issues documented in Jira
to differences, sets of changes, full source code and
provides a visual audit trail of changes over time in
Stash-Git

Issue Tracking System
• Enables organization, prioritization, triage,

planning and tracking resolution of issues and
project tasks

• Provides visibility of issues and tasks on “To Do”,
“In Progress”, “For Review”, and “Done lists”

• Integration of Issue Tracking and Source Control
Systems enables end-to end traceability of issue
and tasks through resolution to source code
implementation and issue to source code
resolution

• Change tracking and control enables visualizing
and reporting on revisions and changes made to
source code and documents by project teammates

• Enables linking software issues documented in Jira
to differences, sets of changes, full source code
and provides a visual audit trail of changes over
time in Stash-Git

Continuous Integration and Build Automation

• Helps development team make system
builds, triggered by either
• A commit of updated source code to the Stash-

Git version control system

• Scheduling directive

• A dependency on the completion of another
component’s build

• Developer kicking off the build using a URL to
make the request

Development Infrastructure Example…

Development Infrastructure Example…

Amazon Elastic Compute Cloud (Amazon EC2)
• Provides cloud-based computer servers for hosting web

application and geospatial capabilities services

• EC2 provides flexibility in selecting among multiple server
instance types, including multiple Linux and Windows server
operating systems and supporting virtual hardware
configurations of CPU, memory and disk storage

• It also will provide flexibility to scale the n-tier architecture
with additional server resources to meet increased node.js
application server capacity needs if and as they emerge.
Amazon EC2 will be put to work in conjunction with the
other AWS resources to support the application
development project

Development Infrastructure Example…

Amazon Elastic Block Store (Amazon EBS)
• Will combine with EC2 and serve as a file server to provide a

responsive, secure, scalable place to store media (pictures
and images) and pre-rendered static drill-down maps that
are accessible over the web from pages of the client
application

• Amazon EBS will also combine with EC2 for implement
Oracle 12c Database with Spatial and Graph to serve as a
secure, scalable database server to store:
• Critical infrastructure data
• User account and role-based authorization permission
• Information on organizations and their data stewards

Development Infrastructure Example…

Amazon Elastic Block Store (Amazon EBS)
• Combines with EC2 and serve as a file server to provide a

responsive, secure, scalable place to store media (pictures
and images) and pre-rendered static drill-down maps that
are accessible over the web from pages of the client
application

• Amazon EBS will also combine with EC2 for implement
Oracle 12c Database with Spatial and Graph to serve as a
secure, scalable database server to store:
• Critical infrastructure data
• User account and role-based authorization permission
• Information on organizations and their data stewards

Application 3+ Tier
Architecture example

Application 3+ Tier
Architecture example

The Presentation Tier runs in the client browser developed using the latest
stable production release versions of:

• Angular.js open-source web client application development framework
• Open Layers open-source dynamic map display client library
• Turf.js web geographic information system
• JavaScript programming language

Application 3+ Tier
Architecture example

• .

• OpenLayers 3.0 open source JavaScript library enables displaying maps in web browsers and its API can be used to build
rich web-based geographic applications similar to Google Maps and Bing Maps

• Turf.js provides native support for GeoJSON which enables exchange of data objects with the server

Angular JS framework enables development of
rich internet client application pages which
support event-driven user interfaces, and code
organization separating display and presentation
logic from data objects and business logic to
facilitate review and understanding
• Angular JS adds intelligence to the web client

(“Fat Client”) which helps provide
responsiveness to the user and reduces
processing burden on the server

Application 3+ Tier
Architecture example

• .

Application Tier occupies the middle portion or “logic” tier
and will be implemented in Node.js and provide support for
the application’s functionality with detailed processing

Node.js provides an event-driven architecture and open-
source runtime environment to support developing server-
side web applications with an API that optimizes application
throughput and scalability for real-time applications.

Node.js can be built with the TLS module (Transport Layer
Security) to provide encrypted communication with the
browser client

• This will require a public key encryption certificate
signed by a Certificate Authority approved by the
customer

Application 3+ Tier
Architecture example

• .

Express.js will provide a light-weight application framework
for handling connection requests to Node JS from the
presentation tier and manage memory storage for sessions

Node_redis provides a fast, efficient, and flexible in-
memory key-value store that behaves as a data structure
server with keys containing strings, lists, sets, hashes and
other data structures that can efficiently support the
workings of a public facing application server

Passport.js is a flexible authentication capability for Node.js
that provides authentication and session management
functions for integration within web services exposed on
the server-side and Angular pages and their GUI
components on the client-side

Passport’s OAuth2 strategy can provide token and cookie
management capabilities for tracking application use and
provide time out capabilities and control for keeping the
application alive as long as specified

Application 3+ Tier
Architecture example

Swagger-node will provide a framework, documentation
and test environment for the RESTful web service API

• It includes a front end user interface that will
enable external developers to work with the
application’s API and gain a clear picture of how the
API responds to requests with various parameters
and options

node-mapserver library provides access to interactive

mapping functionality of the open source MapServer

common gateway interface through a JavaScript

programming interface

node-mapcache provides a rapid map tile caching solution to provide an intermediary between MapServer (when needed)
and Open Layers working in the presentation tier

node-oracledb add-on will serve as a node.js driver for connecting to and interacting with the Oracle database

Agenda

✓Distributed Systems
✓File Server Architecture

✓Client/Server Architecture

✓N-Tier Architecture

✓Thick versus Thin clients

✓Cloud Architecture

✓Service Oriented Architecture (SOA)

✓Example Cloud-based N-Tier SOA Application Development System

• Control Stages and Objectives

Information System Development Control Stages
Control over applications is conducted at every stage and begins at the
start of the development of the information system

This takes 2 basic forms:

1. Control over the development process itself

2. Ensuring adequate business controls are built into the finished
product

Major control stages would include:
• System design
• System development
• System operation
• System utilization

Control Objectives for Business Information Systems

• Confidentiality

• Integrity
• Accuracy

• Completeness

• Validity

• Availability

Control Objectives for Business Information Systems

Different system types may have additional control objectives and
differing priorities within general control objectives, e.g.

• Order processing
• Invoicing
• Inventory control
• Accounts

receivable
• Accounts payable
• Purchasing

• Shipping
• Receiving Payroll
• General ledger
• Specialized systems
• Banking systems
• Retail systems
• Manufacturing systems
• Electronic Data Interchange (EDI)

Control Objectives for Business Information Systems

• Input control objectives
• Processing control objectives
• Output control objectives

Control Objectives for Business Information Systems

Input control objectives
• All transactions are

o initially and completely recorded
o completely and accurately entered into the

system
o entered only once

• Controls in this area may include:
o Pre-numbered documents
o Control total reconciliation
o Data validation
o Activity logging
o Document scanning and retention for

checking
o Access authorization
o Document cancellation (e.g. after entry)

Control Objectives for Business Information Systems
Processing control objectives

• Approved transactions are accepted by the system and processed
• All rejected transactions are reported, corrected, and re-input
• All accepted transactions are processed only once
• All transactions are accurately processed
• All transactions are completely processed

• Controls over processing may include:
• Control totals
• Programmed balancing
• Segregation of duties
• Restricted access
• File labels
• Exception reports
• Error logs
• Reasonableness tests
• Concurrent update control

Control Objectives for Business Information Systems
Output control objectives focus on

• Hardcopy
• File outputs and output record sets stored in tables
• Online query files and outputs stored in tables

• Controls over output may include:
• Assurance that the results of input and processing are output
• Output is available to only authorized personnel
• Complete audit trail
• Output distribution logs

Control Objectives for Business Information Systems
Computer program control objectives focus on

• Integrity of programs and processing
• Prevention of unwanted changes

Typical computer program controls include:

• Ensuring adequate design and development
• Ensuring adequate testing
• Controlled transfer of programs (among machines, from version control, …)
• Ongoing maintainability of systems
• Use of formal SDLC
• User involvement
• Adequate documentation
• Formalized testing plan
• Planned conversion
• Use of post-implementation reviews (see CISA chapter)
• Establishment of a quality assurance (QA) function
• Involvement of internal auditors

Testing of these controls require auditors to seek evidence
regarding their adequacy and effectiveness….

Agenda

✓Distributed Systems
✓File Server Architecture

✓Client/Server Architecture

✓N-Tier Architecture

✓Thick versus Thin clients

✓Cloud Architecture

✓Service Oriented Architecture (SOA)

✓Example Cloud-based N-Tier SOA Application Development System

✓Control Stages and Objectives

