
Interested in learning
more about security?

SANS Institute
InfoSec Reading Room
This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

An Overview of Cryptographic Hash Functions and
Their Uses
This paper provides a discussion of how the two related fields of encryption and hash functions are
complementary, not replacement technologies for one another.

Copyright SANS Institute
Author Retains Full Rights

AD

http://www.sans.org/info/36923
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/647

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 1

John Edward Silva
January 15, 2003

GIAC Security Essentials Practical
Version 1.4b Option 1

An Overview of Cryptographic Hash Functions and Their Uses

1.0 Abstract

A hash function is a function that takes a relatively arbitrary amount of input and
produces an output of fixed size. The properties of some hash functions can be
used to greatly increase the security of a system administrator’s network; when
implemented correctly they can verify the integrity and source of a file, network
packet, or any arbitrary data.

To understand the viability of using hash functions to verify integrity and source
of information, one must first examine the properties and origin of the basic hash
function. The standard hash function serves as a basis for the discussion of
Cryptographic Hash Functions. There are several hash functions currently in
use today, including MD5 and SHA1. By examining the history and security
available in each function, the user can determine which algorithm is best suited
for their application.

Data integrity is a crucial part of any secure system. By using the message
digests generated by a cryptographic hash function a system administrator can
detect unauthorized changes in files. This is especially important when
safeguarding critical system binaries and sensitive databases. After learning the
theory behind data integrity verification, the system administrator is given a brief
introduction into several freely available tools that can be used immediately for
data verification. The tools mentioned are all based on cryptographic hash
functions and include Tripwire, md5sum and sha1sum. When used by a
knowledgeable system administrator, these tools are invaluable in verifying that a
malicious user did not tamper with important system files.

Hash functions can also be combined with other standard cryptographic methods
to verify the source of data. When hashing algorithms are combined with
encryption, they produce special message digests that identify the source of the
data; these special digests are called Message Authentication Codes. The
standard algorithm currently used today is called HMAC. The HMAC algorithm
provides verification of the source of data, and also prevents against attacks
such as the replay attack. Network programmers can use the HMAC algorithm in
their applications today; it is currently available in the latest version of Java.

Lastly there is a discussion of how the two related fields of encryption and hash
functions are complementary, not replacement technologies for one another.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 2

After examining all of the information presented, one will observe that hash
functions, when properly implemented, can greatly increase the integrity and
security in a system administrator’s network.

2.0 Anatomy of a Hash Function

Hash functions are mathematical computations that take in a relatively arbitrary
amount of data as input and produce an output of fixed size. The output is
always the same when given the same input. The inputs to a hash function are
typically called messages, and the outputs are often referred to as message
digests (RSA Laboratories). Nearly any piece of data can be defined as a
message, including character strings, binary files and TCP packets. An example
of a simple hash function would be the following:

Hash function H accepts messages of any length, and outputs a fixed length
digest of one-bit. H returns 0 as the message digest if the input has an even
number of characters, and returns 1 if the output has an odd number of
characters.

All hash functions have the property that it is impossible to determine the input
knowing only the output. In our example function, knowing that the output is 1
does not reveal any information about the input other than it has an odd number
of digits. For example, if an attacker was given the fact that a message has a
digest of “1”, the original message could have been “102”, “xqpr3”, or any input of
odd length. The attacker has no way of determining what the original message
was by being given the digest. This property makes this hash functions a one-
way function, meaning that it is difficult, if not impossible to deduce the input for a
given output.

There are some hash functions which are much more powerful than the example
given above; they are known as Cryptographic hash functions. Cryptographic
hash functions have another property that most hash functions do not; the
property that it is very difficult to find two different messages that produce the
same message digest. Two distinct messages that result in the same digest are
called collisions. In our example function, it is simple to create collisions. Our
example above could not be considered a cryptographic hash function because it
would be trivial to construct two inputs to this hash function that would create the
same output, for example, both the inputs “101” and “32821” would have an
output of 1, because they both have a length which is odd. In modern hash
functions, it is so difficult to create collisions that there are no known efficient
methods to produce them (RSA Laboratories).

Since different messages almost always produce different digests, one can
conclude that if a message digest of a file changes, then the file itself has
changed. This property can be used to provide data integrity and data
authentication to a system administrator, as one will soon see.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 3

2.1 Popular Hash Functions

There are two primarily cryptographic hash functions in use today, MD5 and
SHA1.

MD5 stands for “Message Digest 5” because it is the fifth revision of a message
digest algorithm devised by R.L. Rivest of RSA Laboratories (RSA Laboratories).
The early revisions of this algorithm were published prior to 1989, and the most
recent revision of the algorithm was published in 1991. It has an arbitrary input
length and produces a 128-bit digest (Rivest). Although weaknesses have been
found in the algorithm, there has never been a published collision.

SHA1 stands for “Secure Hash Algorithm 1”, it is the first revision of a hash
algorithm developed by the National Security Agency. The algorithm was first
published in 1995 (Wikipedia). SHA1 supports messages of any length less than
264 bits as input, and produces a 160-bit digest. In the unlikely event that one
wishes to compute the digest of a message larger than 264 bits in length (over 2
billion GB of information), the simplest solution would be to divide the large
messages into smaller messages. There are no known weaknesses in SHA1,
and it is generally considered the more secure of the two algorithms. There are
also variations of SHA1 which produce longer digests, SHA-256, SHA-512. They
produce digests of 256 bits and 512 bits, respectively (Eastlake).

The SHA1 and MD5 algorithms are considered secure because there are no
known techniques to find collisions, except via brute force. In a brute force attack
random inputs are tried, storing the results until a collision is found. If we do not
limit ourselves to finding a collision with a specific message, one can expect to
find a collision within 2n/2 computations, where n is the number of bits in the
digest. (This is commonly known as the birthday attack, please see reference
Krawczyk for more details). This means that an attacker would need to compute
the digests of approximately 264 messages to find a collision in the MD5 function,
and approximately 280 computations to find a collision in SHA1. Note that SHA1
may be more secure than MD5, but it is more costly to compute a message
digest using SHA1 than MD5. If one is expressing security concerns SHA1
would be the function of choice, however, if speed is an issue it is likely that MD5
would result in faster performance, and would likely still be secure enough for
most applications. In August 2001, a complex computing grid theorized by IBM
was believed to be able to achieve 13.6 trillion calculations per second, which
would make it one of the most powerful computers known (IBM Press Release).
Even at this rate, assuming one computation of a digest per super computer
calculation, it would take over 2800 years to find a collision in SHA1. In the
unlikely event that a collision was ever found, security minded individuals could
just use one of the SHA algorithms that produce larger outputs; these algorithms
would require an even greater amount of time to find collisions in.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 4

3.0 Data Integrity

Since two distinct messages are extremely unlikely to generate identical
message digests, one can use this property of cryptographic hash functions to
detect when a message has been altered. If one takes a binary file and
computes a digest of the file, one can record this baseline digest. In the future,
the digest can be recomputed on the file. If the new digest differs from the
original baseline digest, then one can be assured that the file has been altered in
some way (Sptizner). The only way that one could compute the digest of an
altered file and have the digests match would be if one found a collision. Since
collisions are extremely unlikely to occur, if the new digest matches the original
digest, it is extremely likely that the file has not been altered. Therefore, we see
that the properties of cryptographic hash functions can be used to verify that files
have not been altered; one can quickly determine file integrity. Notice though
that one cannot determine specifically what contents of the message have
changed, only that something in the message has changed. For example, if an
attacker were to alter bank account records, one could detect the change by
seeing a changed digest, although one would not be able to determine which
records were altered.

Note that using message digests to verify data integrity is not possible if an
attacker is able to modify the place at which the digests are stored. An attacker
could simply make an unauthorized change, compute the new digest for the file,
and modify the digest database to include the new digest. A system
administrator would not know the difference (unless a digest of the database
itself was stored in an independent location unavailable to the attacker). One
should always at a minimum password protect their digest database, or risk
having their digests corrupted by a malicious user.

3.1 Tools to compute digests

Many tools exist and are readily available to system administrators that can be
used to quickly compute the digests of files. Two simple tools that are included
in most Linux distributions are md5sum and sha1sum. (A Windows port of
md5sum is available at http://etree.org/md5com.html) Both programs are
executed by typing md5sum <filename> or sha1sum <filename> at the command
prompt and hitting return. The resulting message digest is displayed. In the
exercise below, one computes the digest of a file, alters it, then recomputes the
digest. One can then verify that the digest changes as well.

First, a new file is created. In this example, the file myfile.txt is created with the
message “moo” within (Figure 1).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 5

Figure 1

Now the digest of the file is computed using md5sum (Figure 2).

Figure 2

Now the file content is altered, “moo” is changed to “foo” (Figure 3). Note that a
file is considered change with any addition or deletion of any character, including
whitespace and case changes.

Figure 3

Now rerun the hash function programs on the same input file to get new digests.
Notice that when the new digest is compared to the original, it is different (Figure
4).

Figure 4

Remember this only shows you that the file was changed, not how it was
changed. Digests are certainly not a substitute for backups.

There are many products that will take periodic digests of the files you specify
and compare them to the previous digests. If they change, they have the ability
to notify the system administrator of a problem. This is especially valuable for
verifying the integrity of commonly used, but rarely changed files, such as ls or
pwd. Such files are common targets of hackers and root kits (Prosise). One
popular tool that automates the file integrity checking process is called Tripwire
(developed by Tripwire, Inc.). Tripwire is available as both a commercial product
and free open-source Linux project. Unfortunately, the configuration and usage
of Tripwire exceeds the scope of this paper, but there is very informative article
on the topic available at
http://www.linuxsecurity.com/feature_stories/feature_story-81.html (Lynch).

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 6

3.0 Data Authentication

Another application of cryptographic hash functions is data authentication. Data
authentication is the process of being able to verify the source of data. With data
authentication, one can distinguish messages originating from the intended
sender and an attacker. Hash functions alone, unfortunately, cannot provide
data authentication. Since the hashing functions are freely available, it is trivial to
anyone, including an attacker, to create a digest for an arbitrary message. If one
is given both a message and a digest, one can verify the integrity of the
message. However, it does not necessarily mean that it was the message sent
by the original sender. For example, if an email is sent with a message digest
attached, the recipient could use the digest to verify the integrity of the message.
However, it is possible that an attacker modified both the message and the
digest. This change would be undetectable to the recipient. The point is
illustrated in the example below:

Suppose Customer A sends a message to their bank, asking them to transfer 5
dollars from their checking to their savings account. Attacker A then blocks the
transmission of Customer A’s message, and creates one of their own stating to
transfer 500 dollars from Customer A’s checking account into Attacker A’s
account. Attacker A then computes the appropriate md5 checksum (something
similar to b7ab99c9fc23453f77fb6bfef131bc07) for the fraudulent message and
sends it to the bank. The bank could then verify that the data was not modified in
transit, because the digest matches the message sent. However, the message
did not originate from Customer A, the only one who is authorized to make
transactions from their checking account.

This is a very common attack called forgery. If the bank simply verified the
message digest matches the message, it can never be assured that the sender
was actually Customer A. One would like a method by which the authenticity of
the source of data can be verified. Fortunately, using cryptographic hash
functions and secret key cryptography, this can be achieved.

3.1 Message Authentication Codes

Any time one sends a message masquerading as another user this is forgery,
and as one can see from the above example, this is a very big problem. In order
to prevent this type of attack, Message Authentication Codes were developed.

Message authentication codes are similar in usage to a message digest. By
taking the message and performing some computations, one can verify the
integrity of the data. Additionally, message authentication codes are also able to
verify the source of data. Message authentication codes are specially created
message digests that can be created only by the original sender.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 7

In many instances, when two parties communicate they create a shared secret
key known only to themselves. This shared key is used to encrypt data during
the session. There are several techniques used to create this shared key without
exposing it to an attacker, such as the Diffie-Hellman key exchange protocol.
Unfortunately, the mechanics of such key exchange algorithms are outside the
scope of this document (for more information, please consult Palmgren). If one
assuming the two parties can safely create a secret key, this key can be used to
generate message authentication codes. Using the simple algorithm below, one
can see how when hash functions and secret keys are combined, data
authentication is achieved.

One simple method would be to append the secret key to the message prior to
performing the digest. This digest becomes the message authentication code,
and it is sent to the recipient. In order to verify the source, the recipient would
append the secret key to the received message and perform the digest. If the
digest is the same as the sent authentication code, then both the integrity and the
source of the data has been verified; because only the sender and recipient know
the secret key, it is not possible for an attacker to generate a successful
message authentication code (RSA Laboratories).

3.2 The HMAC scheme

A popular implementation of message authentication codes is the HMAC (Hash
Message Authentication Code) scheme (Krawczyk). Although the algorithm
described in the above section seems secure, it is actually susceptible to several
attacks, such as the replay attack. The standard protocol for creating and
veri fying message authentication codes generated via hash functions has many
methods for dealing with these attacks. This protocol in use today has come to
be known as the HMAC algorithm. The HMAC (which stands for Hashing
Message Authentication Codes) algorithm is defined in RFC 2085 and was
developed by NIST researchers in 1997 (Oehler). The use of HMAC is very
common in any system where messages require authenticity of source. Many
secure Internet protocols use HMAC to provide authenticity of data, including
some variations of IPSec (Frankel).

3.3 Replay Attacks thwarted by HMAC

One has already seen that message authentication codes such as HMAC
prevent data forgery; that is it detects when messages are sent by anyone other
than the original sender. There is another type of attack that is particularly
worrisome, the replay attack (Oehler).

An attacker may not be able to successfully create a message authentication
code for a new message. However, an attacker has likely viewed previously
valid message authentication codes in transit. Imagine this scenario:

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 8

Attacker A is an Internet merchant selling books on cryptography. Whenever a
purchase is made, he watches the messages that are sent to the bank to
authorize the bank to transfer money from the customer’s account into his own.
The attacker has now seen a valid message (transfer money from his account to
my account) and the associated authentication code. The attacker can then
send this message, along with its valid authentication code repeatedly, eventually
transferring the customer’s entire account into his own.

HMAC prevents this type of attack by appending a form of timestamp to each
message (Oehler). The recipient can then verify that the message has not been
previously received. If it is truly the case where multiple messages of the same
type are sent, then the new timestamp will differentiate the messages.
Note that the mathematics behind the HMAC algorithm are extremely complex
and not as straightforward as presented above. They are presented above in
simpler form for the sake of simplicity. If one is interested in the full details of the
algorithm, one should consult the RFC (Oehler).

3.4 HMAC in Java

If one wishes to use the HMAC system in a programming project, there is a
reference implementation included in the Java programming language v1.4 (Sun
Microsystems). The HMAC algorithm is a vital component in the Java Secure
Sockets Extension libraries; whenever Java secure sockets are used in an
application, the HMAC scheme is providing authentication of data while it
traverses the network. HMAC is available with either MD5 or SHA1 as the
underlying hash algorithm.

4.0 Encryption vs. Integrity and Authentication

Many believe the related field of encryption can be used to provide the same
benefits as hash functions, such as file integrity, because if someone were able
to modify the data it will be obvious to the person after the file is unencrypted.
Unfortunately, in many cases it is difficult, if not impossible to see these
corruptions in the file. Suppose the file contained a random bit string; any
change would not be visible to the user. Digests afford another luxury that
encryption does not, which is that the verification method can be made publicly
available. If one uses encryption to perform file integrity checks, only one who
knows the key to decrypting the file can determine its integrity. Therefore, if one
wishes the integrity of a file to be publicly verifiable, they must divulge their
decryption key, a large breach of security to say the least. However, with
message digests, the digest can be publicly distributed, and anyone able to
compute a message digest of the same type can verify the integrity of the file.
This verification can come independently of the file being encrypted or not.

Hash functions also have another property that encryption algorithms do not; this
property is known as “transient” effect (Krawczyk). What this means is that past

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 9

integrity and authentication of data is always valid. If in the future, a hash
function is proven flawed, then all data that was verified prior to this discovery of
the flaw still maintains its integrity. However, if in the future an encryption
algorithm is found to be flawed, then all messages encrypted using that algorithm
can be decrypted. The primarily goal of encryption, data secrecy, is
compromised. Hash functions, on the other hand, maintain their past integrity.

5.0 Conclusion

Clearly, the properties of cryptographic hash functions have many applications in
the realm of computer security, and programs built on top of cryptographic hash
functions have the ability to help a system administrator detect changes of
valuable data on his or her network. They also are able to prove the originator of
messages in a system. These concepts are particularly relevant in the growing
online world, where every message sent across the wire can be worth money,
and every file on a server is a valuable resource. Without safeguards such as
those afforded by hash functions, data would be extremely vulnerable to attack.
Now that the system administrator is aware of the issues that exist, they can
make an informed decision when using and purchasing technologies to protect
data. Every application must be scrutinized with respect to the integrity and
authentication checks it performs, and it must use the latest hash functions to
guarantee security. The system administrator now understands that simply
encrypting data is not enough, and other precautions must be taken. Customers
and employees demand these safeguards in our unsure digital world where our
data is constantly coming under attack from hackers and malicious insiders.

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 10

6.0 Sources and References

Eastlake, Motorola, Jones. “RFC 3174 - US Secure Hash Algorithm 1 (SHA1)“,
September 2001. URL: http://www.faqs.org/rfcs/rfc3174.html

Frankel, S. “Internet Draft - The HMAC-SHA-256-128 Algorithm and Its Use With
Ipsec”, June 2002. URL: http://www.ietf.org/internet-drafts/draft-ietf-ipsec-ciph-
sha-256-01.txt

IBM Press Release. “IBM Selected to Build World's Most Powerful Computing
Grid”, August 2001. URL: http://www-
916.ibm.com/press/prnews.nsf/jan/7613B7AF8EA527D385256AA3006EC06B

Krawczyk, Bellare, Canetti. “RFC 2104- HMAC: Keyed-Hashing for Message
Authentication”, February 1997. URL: http://www.ietf.org/rfc/rfc2104.txt

Lynch, William. “Getting Started with Tripwire (Open Source Linux Edition)” ,
March 2001. URL: http://www.linuxsecurity.com/feature_stories/feature_story-
81.html.

Oehler, Glenn. “RFC 2085 - HMAC-MD5 IP Authentication with Replay
Prevention”, February 1997. URL: http://www.cis.ohio-state.edu/cgi-
bin/rfc/rfc2085.html

Palmgren, Keith. “Diffie-Hellman Key Exchange - A Non-Mathematician's
Explanation”,October 2000. URL:
http://networking.earthweb.com/netsecur/article.php/624441

Prosise, Chris; Shahm Saumil. “Anatomy of a Hack”, January 2001. URL:
http://dotphoto.cnet.com/webbuilding/0-7532-8-4561014-2.html

Rivest, R. “RFC 1321 - The MD5 Message-Digest Algorithm“, April 1992,URL:
http://www.cis.ohio-state.edu/rfc/rfc1321.txt

RSA Laboratories. “What are MD2, MD4, and MD5?”, Date Unknown. URL:
http://www.rsasecurity.com/rsalabs/faq/3-6-6.html.

RSA Laboratories. “What is a hash function?”, Date Unknown. URL:
http://www.rsasecurity.com/rsalabs/faq/2-1-6.html

RSA Laboratories. “What are Message Authentication Codes?” Date Unknown.
URL: http://www.rsasecurity.com/rsalabs/faq/2-1-7.html

Sptizner, Lance. “What is MD5, and why do I care?”, Date Unknown. URL:
http://www.spitzner.net/md5.html

©
 S

A
N

S
In

st
itu

te
 2

00
3,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2003, As part of the Information Security Reading Room. Author retains full rights.
 11

Sun Microsystems. “JavaTM Secure Socket Extension (JSSE) Reference Guide”,
2001. URL:
http://java.sun.com/j2se/1.4.1/docs/guide/security/jsse/JSSERefGuide.html

Wikipedia. “SHA-1”, March 2002. URL: http://www.wikipedia.org/wiki/SHA-1

Last Updated: August 27th, 2017

Upcoming SANS Training
Click Here for a full list of all Upcoming SANS Events by Location

SANS Tampa - Clearwater 2017 Clearwater, FLUS Sep 05, 2017 - Sep 10, 2017 Live Event

SANS Network Security 2017 Las Vegas, NVUS Sep 10, 2017 - Sep 17, 2017 Live Event

SANS Dublin 2017 Dublin, IE Sep 11, 2017 - Sep 16, 2017 Live Event

SANS Baltimore Fall 2017 Baltimore, MDUS Sep 25, 2017 - Sep 30, 2017 Live Event

SANS Copenhagen 2017 Copenhagen, DK Sep 25, 2017 - Sep 30, 2017 Live Event

SANS London September 2017 London, GB Sep 25, 2017 - Sep 30, 2017 Live Event

Data Breach Summit & Training Chicago, ILUS Sep 25, 2017 - Oct 02, 2017 Live Event

Rocky Mountain Fall 2017 Denver, COUS Sep 25, 2017 - Sep 30, 2017 Live Event

SANS SEC504 at Cyber Security Week 2017 The Hague, NL Sep 25, 2017 - Sep 30, 2017 Live Event

SANS Oslo Autumn 2017 Oslo, NO Oct 02, 2017 - Oct 07, 2017 Live Event

SANS DFIR Prague 2017 Prague, CZ Oct 02, 2017 - Oct 08, 2017 Live Event

SANS Phoenix-Mesa 2017 Mesa, AZUS Oct 09, 2017 - Oct 14, 2017 Live Event

SANS October Singapore 2017 Singapore, SG Oct 09, 2017 - Oct 28, 2017 Live Event

SANS AUD507 (GSNA) @ Canberra 2017 Canberra, AU Oct 09, 2017 - Oct 14, 2017 Live Event

Secure DevOps Summit & Training Denver, COUS Oct 10, 2017 - Oct 17, 2017 Live Event

SANS Tysons Corner Fall 2017 McLean, VAUS Oct 14, 2017 - Oct 21, 2017 Live Event

SANS Tokyo Autumn 2017 Tokyo, JP Oct 16, 2017 - Oct 28, 2017 Live Event

SANS Brussels Autumn 2017 Brussels, BE Oct 16, 2017 - Oct 21, 2017 Live Event

SANS Berlin 2017 Berlin, DE Oct 23, 2017 - Oct 28, 2017 Live Event

SANS San Diego 2017 San Diego, CAUS Oct 30, 2017 - Nov 04, 2017 Live Event

SANS Seattle 2017 Seattle, WAUS Oct 30, 2017 - Nov 04, 2017 Live Event

SANS Gulf Region 2017 Dubai, AE Nov 04, 2017 - Nov 16, 2017 Live Event

SANS Miami 2017 Miami, FLUS Nov 06, 2017 - Nov 11, 2017 Live Event

SANS Amsterdam 2017 Amsterdam, NL Nov 06, 2017 - Nov 11, 2017 Live Event

SANS Milan November 2017 Milan, IT Nov 06, 2017 - Nov 11, 2017 Live Event

Pen Test Hackfest Summit & Training 2017 Bethesda, MDUS Nov 13, 2017 - Nov 20, 2017 Live Event

SANS Paris November 2017 Paris, FR Nov 13, 2017 - Nov 18, 2017 Live Event

SANS Sydney 2017 Sydney, AU Nov 13, 2017 - Nov 25, 2017 Live Event

SANS San Francisco Fall 2017 OnlineCAUS Sep 05, 2017 - Sep 10, 2017 Live Event

SANS OnDemand Books & MP3s OnlyUS Anytime Self Paced

http://www.sans.org/info/36919
http://www.sans.org/link.php?id=46465
http://www.sans.org/tampa-clearwater-2017
http://www.sans.org/link.php?id=47052
http://www.sans.org/network-security-2017
http://www.sans.org/link.php?id=49177
http://www.sans.org/sans-dublin-2017
http://www.sans.org/link.php?id=46887
http://www.sans.org/baltimore-fall-2017
http://www.sans.org/link.php?id=46500
http://www.sans.org/copenhagen-2017
http://www.sans.org/link.php?id=46530
http://www.sans.org/london-september-2017
http://www.sans.org/link.php?id=48222
http://www.sans.org/data-breach-summit-2017
http://www.sans.org/link.php?id=48217
http://www.sans.org/rocky-mountain-fall-2017
http://www.sans.org/link.php?id=49677
http://www.sans.org/sec504-cyber-security-week-2017
http://www.sans.org/link.php?id=49642
http://www.sans.org/olso-autumn-2017
http://www.sans.org/link.php?id=46550
http://www.sans.org/dfir-prague-2017
http://www.sans.org/link.php?id=48967
http://www.sans.org/phoenix-mesa-2017
http://www.sans.org/link.php?id=46155
http://www.sans.org/october-singapore-2017
http://www.sans.org/link.php?id=50375
http://www.sans.org/aud507-canberra-2017
http://www.sans.org/link.php?id=48227
http://www.sans.org/secure-devops-summit-2017
http://www.sans.org/link.php?id=46470
http://www.sans.org/tysons-corner-2017
http://www.sans.org/link.php?id=47432
http://www.sans.org/tokyo-autumn-2017
http://www.sans.org/link.php?id=46545
http://www.sans.org/brussels-autumn-2017
http://www.sans.org/link.php?id=46535
http://www.sans.org/berlin-2017
http://www.sans.org/link.php?id=46390
http://www.sans.org/san-diego-2017
http://www.sans.org/link.php?id=46395
http://www.sans.org/seattle-2017
http://www.sans.org/link.php?id=47942
http://www.sans.org/gulf-region-2017
http://www.sans.org/link.php?id=47117
http://www.sans.org/miami-2017
http://www.sans.org/link.php?id=46555
http://www.sans.org/amsterdam-2017
http://www.sans.org/link.php?id=50620
http://www.sans.org/milan-november-2017
http://www.sans.org/link.php?id=49187
http://www.sans.org/pen-test-hackfest-2017
http://www.sans.org/link.php?id=49297
http://www.sans.org/paris-november-2017
http://www.sans.org/link.php?id=48677
http://www.sans.org/sydney-2017
http://www.sans.org/link.php?id=47047
http://www.sans.org/san-francisco-fall-2017
http://www.sans.org/link.php?id=1032
http://www.sans.org/ondemand/about.php

