MIS 5208 – Lecture 08 – Investigating Theft Acts (Part 2)

Ed Ferrara, MSIA, CISSP eferrara@temple.edu

Preparing the Investigation Team

- Before initiating the search:
 - Review facts, plans, and objectives with the investigation team you have assembled
- Goal of scene processing
 - To collect and secure digital evidence
- Digital evidence is volatile
 - Develop skills to assess facts quickly
- Slow response can cause digital evidence to be lost

Securing an Incident or Crime Scene

Goals

- Preserve the evidence
- Keep information confidential

Define a secure perimeter

- Use yellow barrier tape
- Legal authority for a corporate incident includes trespassing violations
- For a crime scene, it includes obstructing justice or failing to comply with a police officer

- Professional curiosity can destroy evidence
 - Involves police officers and other professionals who aren't part of the crime scene processing team
- Automated Fingerprint Identification System (AFIS)
 - A computerized system for identifying fingerprints that's connected to a central database
 - Used to identify criminal suspects and review thousands of fingerprint samples at high speed
- Police can take elimination prints of everyone who had access to the crime scene

Seizing Digital Evidence at the Scene

- Law enforcement can seize evidence
 - With a proper warrant
- Corporate investigators might have the authority only to make an image of the suspect's drive
- When seizing digital evidence in criminal investigations
 - Follow U.S. DoJ standards for seizing digital data
- Civil investigations follow same rules
 - Require less documentation though
- Consult with your attorney for extra guidelines

Preparing to Acquire Digital Evidence

- The evidence you acquire at the scene depends on the nature of the case
 - And the alleged crime or violation
- Ask your supervisor or senior forensics examiner in your organization the following questions:
 - Do you need to take the entire computer and all peripherals and media in the immediate area?
 - How are you going to protect the computer and media while transporting them to your lab?
 - Is the computer powered on when you arrive?

Preparing to Acquire Digital Evidence

- Ask your supervisor or senior forensics examiner in your organization the following questions (cont'd):
 - Is the suspect you're investigating in the immediate area of the computer?
 - Is it possible the suspect damaged or destroyed the computer, peripherals, or media?
 - Will you have to separate the suspect from the computer?

Guidelines

- Keep a journal to document your activities
- Secure the scene
 - Be professional and courteous with onlookers
 - Remove people who are not part of the investigation
- Take video and still recordings of the area around the computer
 - Pay attention to details
- Sketch the incident or crime scene
- Check state of computers as soon as possible

Guidelines (cont'd)

- Don't cut electrical power to a running system unless it's an older Windows 9x or MS-DOS system
- Save data from current applications as safely as possible
- Record all active windows or shell sessions
- Make notes of everything you do when copying data from a live suspect computer
- Close applications and shut down the computer

Guidelines (cont'd)

- Bag and tag the evidence, following these steps:
 - Assign one person to collect and log all evidence
 - Tag all evidence you collect with the current date and time, serial numbers or unique features, make and model, and the name of the person who collected it
 - Maintain two separate logs of collected evidence
 - Maintain constant control of the collected evidence and the crime or incident scene

Guidelines (cont'd)

- Look for information related to the investigation
 - Passwords, passphrases, PINs, bank accounts
- Collect documentation and media related to the investigation
 - Hardware, software, backup media, documentation, manuals

Processing Data Centers with RAID Systems

Sparse acquisition

- Technique for extracting evidence from large systems
- Extracts only data related to evidence for your case from allocated files
 - And minimizes how much data you need to analyze
- Drawback of this technique
 - It doesn't recover data in free or slack space

Using a Technical Advisor

- A technical advisor can help:
 - List the tools you need to process the incident or crime scene
 - Guide you about where to locate data and helping you extract log records
 - Or other evidence from large RAID servers
 - Create the search warrant by itemizing what you need for the warrant

Using a Technical Advisor

Responsibilities

- Know all aspects of the seized system
- Direct investigator handling sensitive material
- Help secure the scene
- Help document the planning strategy
- Conduct ad hoc trainings
- Document activities
- Help conduct the search and seizure

Documenting Evidence in the Lab

- Record your activities and findings as you work
 - Maintain a journal to record the steps you take as you process evidence
- Your goal is to be able to reproduce the same results
 - When you or another investigator repeat the steps you took to collect evidence
- A journal serves as a reference that documents the methods you used to process digital evidence

Processing and Handling Digital Evidence

- Maintain the integrity of digital evidence in the lab
 - As you do when collecting it in the field
- Steps to create image files:
 - Copy all image files to a large drive
 - Start your forensics tool to analyze the evidence
 - Run an MD5 or SHA-1 hashing algorithm on the image files to get a digital hash
 - Secure the original media in an evidence locker

Storing Digital Evidence

- The media you use to store digital evidence usually depends on how long you need to keep it
- CDs, DVDs, DVD-Rs, DVD+Rs, or DVD-RWs
 - The ideal media
 - Capacity: up to 17 GB
 - Lifespan: 2 to 5 years
- Magnetic tapes 4-mm DAT
 - Capacity: 40 to 72 GB
 - Lifespan: 30 years
 - Costs: drive: \$400 to \$800; tape: \$40

Storing Digital Evidence

- Super Digital Linear Tape (Super-DLT or SDLT)
 - Specifically designed for large RAID data backups
 - Can store more than 1 TB of data
- Smaller external SDLT drives can connect to a workstation through a SCSI card
- Don't rely on one media storage method to preserve your evidence
 - Make two copies of every image to prevent data loss
 - Use different tools to create the two images

Evidence Retention and Media Storage Needs

- To help maintain the chain of custody for digital evidence
 - Restrict access to lab and evidence storage area
- Lab should have a sign-in roster for all visitors
 - Maintain logs for a period based on legal requirements
- You might need to retain evidence indefinitely
 - Check with your local prosecuting attorney's office or state laws to make sure you're in compliance

Evidence Retention / Media Storage Needs

Item description:				
Item tag number:				
Person	Date logged out	Time logged out	Date logged in	Time logged in

Figure 4-5 A sample log file © Cengage Learning®

Documenting Evidence

- Create or use an evidence custody form
- An evidence custody form serves the following functions:
 - Identifies the evidence
 - Identifies who has handled the evidence
 - Lists dates and times the evidence was handled
- You can add more information to your form
 - Such as a section listing MD5 and SHA-1 hash values

Documenting Evidence

- Include any detailed information you might need to reference
- Evidence bags also include labels or evidence forms you can use to document your evidence
 - Use antistatic bags for electronic components

- Cyclic Redundancy Check (CRC)
 - Mathematical algorithm that determines whether a file's contents have changed
 - Not considered a forensic hashing algorithm
- Message Digest 5 (MD5)
 - Mathematical formula that translates a file into a hexadecimal code value, or a hash value
 - If a bit or byte in the file changes, it alters the hash value, which can be used to verify a file or drive has not been tampered with

- Three rules for forensic hashes:
 - You can't predict the hash value of a file or device
 - No two hash values can be the same
 - If anything changes in the file or device, the hash value must change
- Secure Hash Algorithm version 1 (SHA-1)
 - A newer hashing algorithm
 - Developed by the National Institute of Standards and Technology (NIST)

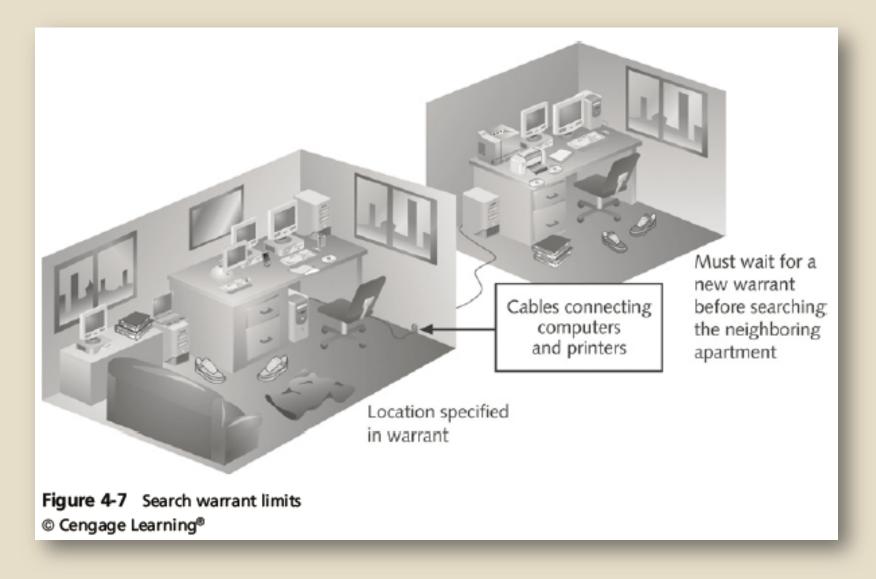
- In both MD5 and SHA-1, collisions have occurred
- Most digital forensics hashing needs can be satisfied with a nonkeyed hash set
 - A unique hash number generated by a software tool, such as the Linux md5sum command
- Keyed hash set
 - Created by an encryption utility's secret key
- You can use the MD5 function in FTK Imager to obtain the digital signature of a file
 - Or an entire drive

	Drive/Image Verify Results - 🗆 🗙		
Ð			
Name	E:\		
Sector count	7835604		
E MD5 Hash			
Computed hash	82e7b449084a7eef89c7d99db6f0c8f0		
🗆 SHA1 Hash			
Computed hash	30cd55f0774a59b723234bfdd236483f41cba3		
E Bad Sector List			
Bad sector(s)	No bad sectors found		
	1		
	iQosei		

Figure 4-6 Using FTK Imager to verify hash values Courtesy of AccessData Group, Inc.

Sample Civil Investigation

- Most cases in the corporate environment are considered lowlevel investigations
 - Or noncriminal cases
- Common activities and practices
 - Recover specific evidence
 - Suspect's Outlook e-mail folder (PST file)
 - Covert surveillance
 - Its use must be well defined in the company policy
 - Risk of civil or criminal liability
 - Sniffing tools for data transmissions



Sample Criminal Investigation

- Computer crimes examples
 - Fraud
 - Check fraud
 - Homicides
- Need a warrant to start seizing evidence
 - Limit searching area

Sample Criminal Investigation

Summary

- Digital evidence is anything stored or transmitted on electronic or optical media
- In the private sector, incident scene is often in a contained and controlled area
- Companies should publish the right to inspect computer assets policy
- Private and public sectors follow same computing investigation rules
- Criminal cases
 - Require warrants

Summary

- Protect your safety and health as well as the integrity of the evidence
- Follow guidelines when processing an incident or crime scene
 - Security perimeter
 - Video recording
- As you collect digital evidence, guard against physically destroying or contaminating it
- Forensic hash values verify that data or storage media have not been altered

Summary

- To analyze computer forensics data, learn to use more than one vendor tool
- You must handle all evidence the same way every time you handle it
- After you determine that an incident scene has digital evidence, identify the digital information or artifacts that can be used as evidence

Thank you

