MIS 5208 - Lecture 12 – Investigation Methods – Data Acquisition

Ed Ferrara, MSIA, CISSP eferrara@temple.edu

Objectives

- List digital evidence storage formats
- Explain ways to determine the best acquisition method
- Describe contingency planning for data acquisitions
- Explain how to use acquisition tools
- Explain how to validate data acquisitions
- Describe RAID acquisition methods
- Explain how to use remote network acquisition tools
- List other forensic tools available for data acquisitions

Digital Evidence Storage Formats

- Data in a forensics acquisition tool is stored as an image file
- Three formats
 - Raw format
 - Proprietary formats
 - Advanced Forensics Format (AFF)

Raw Format

- Makes it possible to write bit-stream data to files
- Advantages
 - Fast data transfers
 - Ignores minor data read errors on source drive
 - Most computer forensics tools can read raw format
- Disadvantages
 - Requires as much storage as original disk or data
 - Tools might not collect marginal (bad) sectors

Proprietary Formats

- Most forensics tools have their own formats
- Features offered
 - Option to compress or not compress image files
 - Can split an image into smaller segmented files
 - Can integrate metadata into the image file
- Disadvantages
 - Inability to share an image between different tools
 - File size limitation for each segmented volume
- The Expert Witness format is unofficial standard

Advanced Forensics Format

- Developed by Dr. Simson L. Garfinkel as an open-source acquisition format
- Design goals
 - Provide compressed or uncompressed image files
 - No size restriction for disk-to-image files
 - Provide space in the image file or segmented files for metadata
 - Simple design with extensibility
 - Open source for multiple platforms and OSs

Advanced Forensics Format

- Design goals (cont'd)
 - Internal consistency checks for self-authentication
- File extensions include .afd for segmented image files and .afm for AFF metadata
- AFF is open source

- Types of acquisitions
 - Static acquisitions and live acquisitions
- Four methods of data collection
 - Creating a disk-to-image file
 - Creating a disk-to-disk
 - Creating a logical disk-to-disk or disk-to-data file
 - Creating a sparse data copy of a file or folder
- Determining the best method depends on the circumstances of the investigation

Creating a disk-to-image file

- Most common method and offers most flexibility
- Can make more than one copy
- Copies are bit-for-bit replications of the original drive
- ProDiscover, EnCase, FTK, SMART, Sleuth Kit, X-Ways, iLookIX
- Creating a disk-to-disk
 - When disk-to-image copy is not possible
 - Tools can adjust disk's geometry configuration
 - EnCase, SafeBack, SnapCopy

Logical acquisition or sparse acquisition

- Can take several hours; use when your time is limited
- Logical acquisition captures only specific files of interest to the case
- Sparse acquisition collects fragments of unallocated (deleted) data
- For large disks
- PST or OST mail files, RAID servers

- When making a copy, consider:
 - Size of the source disk
 - Lossless compression might be useful
 - Use digital signatures for verification
 - When working with large drives, an alternative is using tape backup systems
 - Whether you can retain the disk

1

Contingency Planning for Image Acquisitions

- Create a duplicate copy of your evidence image file
- Make at least two images of digital evidence
 - Use different tools or techniques
- Copy host protected area of a disk drive as well
 - Consider using a hardware acquisition tool that can access the drive at the BIOS level
- Be prepared to deal with encrypted drives
 - Whole disk encryption feature in Windows called BitLocker makes static acquisitions more difficult
 - May require user to provide decryption key

2

Using Acquisition Tools

- Acquisition tools for Windows
 - Advantages
 - Make acquiring evidence from a suspect drive more convenient
 - Especially when used with hot-swappable devices
 - Disadvantages
 - Must protect acquired data with a well-tested write-blocking hardware device
 - Tools can't acquire data from a disk's host protected area
 - Some countries haven't accepted the use of write-blocking devices for data acquisitions

Mini-WinFE Boot CDs and USB Drives

Mini-WinFE

- Enables you to build a Windows forensic boot CD/DVD or USB drive so that connected drives are mounted as read-only
- Before booting a suspect's computer:
 - Connect your target drive, such as a USB drive
- After Mini-WinFE is booted:
 - You can list all connected drives and alter your target USB drive to read-write mode so you can run an acquisition program

- Linux can access a drive that isn't mounted
- Windows OSs and newer Linux automatically mount and access a drive
- Forensic Linux Live CDs don't access media automatically
 - Which eliminates the need for a write-blocker
- Using Linux Live CD Distributions
 - Forensic Linux Live CDs
 - Contain additionally utilities

- Using Linux Live CD Distributions (cont'd)
 - Forensic Linux Live CDs (cont'd)
 - Configured not to mount, or to mount as read-only, any connected storage media
 - Well-designed Linux Live CDs for computer forensics
 - Penguin Sleuth
 - F.I.R.E
 - CAINE
 - Deft
 - Kali Linux
 - Knoppix
 - SANS Investigative Toolkit

- Preparing a target drive for acquisition in Linux
 - Current Linux distributions can create Microsoft FAT and NTFS partition tables
 - fdisk command lists, creates, deletes, and verifies partitions in Linux
 - mkfs.msdos command formats a FAT file system from Linux
 - If you have a functioning Linux computer, follow steps starting on page 99 to learn how to prepare a target drive for acquisition

- Acquiring data with dd in Linux
 - dd ("data dump") command
 - Can read and write from media device and data file
 - Creates raw format file that most computer forensics analysis tools can read
 - Shortcomings of dd command
 - Requires more advanced skills than average user
 - Does not compress data
 - dd command combined with the split command
 - Segments output into separate volumes

- Acquiring data with dd in Linux (cont'd)
 - Follow the step starting on page 104 in the text to make an image of an NTFS disk on a FAT32 disk
- Acquiring data with dcfldd in Linux
 - The dd command is intended as a data management tool
 - Not designed for forensics acquisitions

- Acquiring data with dcfldd in Linux (cont'd)
 - dcfldd additional functions
 - Specify hex patterns or text for clearing disk space
 - Log errors to an output file for analysis and review
 - Use several hashing options
 - Refer to a status display indicating the progress of the acquisition in bytes
 - Split data acquisitions into segmented volumes with numeric extensions
 - Verify acquired data with original disk or media data

Image with AccessData FTK

- Included with AccessData Forensic Toolkit
- Designed for viewing evidence disks and disk-to-image files
- Makes disk-to-image copies of evidence drives
 - At logical partition and physical drive level
 - Can segment the image file
- Evidence drive must have a hardware write-blocking device
 - Or run from a Live CD, such as Mini-WinFE

e .	AccessData FTK Imager	3.1.1.8	- = ×
Ele View Mode Help			
2 2 4 4 4 4 6 8 6 4 8		표권 ? .	
Evidence Tree ×	File List		
	Name	Size Type	Date Modified
Eustom Content Sources ×			
Evidence: He System (Fach (File) Options			· · · · · · · · · · · · · · · · · · ·
Mew Edit Asmove Remove Al Greate Image			
Properties Hex Value Int Custom Conte			
For User Guide, press F1			NUM

Figure 3-4 The FTK Imager main window Courtesy of AccessData Group, Inc.

- FTK Imager can't acquire a drive's host protected area
- Use a write-blocking device and follow these steps
 - Boot to Windows
 - Connect evidence disk to a write-blocker
 - Connect target disk to write-blocker
 - Start FTK Imager Lite
 - Create Disk Image use Physical Drive option
 - See Figures on the following slides for more steps

- Source Driv	e Selection			
Please se	lect from the follow	wing available d	lrives:	
\\.\PHY	SICALDRIVE1 - P	retec UltimateG	iuard USB Device [8	GE 🖵
		D. : L		
	Z Danka I	Finish	Cancel	Heli

	Sele	ct Image T	ype	
Please Select the [Destination Im	age Type —		
(Flaw (dd)				
C SMART				
C E01				
C AFF				
	< Back	Nexd >	Cancel	Help

Courtesy of AccessData Group, Inc.

Eudonoo Number:	Incripto
Evidence Number.	Pichp03-01
Unique Description:	Acquisition of 8gb Thumb Drive
Examiner:	Joe Friday
Notes:	Raw (dd) image

Figure 3-7 The Evidence Item Information dialog box Courtesy of AccessData Group, Inc.

nage Filename (Excluding Extension) nChp03-ftk Image Fragment Size (MB) For Raw, E01, and AFF formats: 0 = do not fragment Compression (0=None, 1=Fastest,, 9=Smallest) 0			Brows	se
Image Fragment Size (MB) For Raw, EO1, and AFF formats: 0 = do not fragment Compression (0=None, 1=Fastest,, 9=Smallest) Use AD Encryption	mage Filename (Excluding Exte	ension)		
Image Fragment Size (MB) For Raw, EO1, and AFF formats: 0 = do not fragment Compression (0=None, 1=Fastest,, 9=Smallest) Use AD Encryption	InChp03-ftk			
	For Raw, ED1, and AFF Compression (0=Nor	Image Fragment Size (M formats: 0 = do not fragme ne, 1=Fastest,, 9=Smalle	B) 1500 ent 0	*

Figure 3-8 Selecting where to save the image file Courtesy of AccessData Group, Inc.

Image Source:	\\.\PHYSICALDRIVE1
Destination:	C:\Work\Chap03\Chapter\InChp03-ftk
Status:	Image created successfully
Progress	
Ela	osed time: 0:07:30
Ela Est	psed time: 0:07:30 imated time left:

Figure 3-9 A completed image save Courtesy of AccessData Group, Inc.

Validating Data Acquisitions

- Validating evidence may be the most critical aspect of computer forensics
- Requires using a hashing algorithm utility
- Validation techniques
 - CRC-32, MD5, and SHA-1 to SHA-512

Linux Validation Methods

- Validating dd acquired data
 - You can use md5sum or sha1sum utilities
 - md5sum or sha1sum utilities should be run on all suspect disks and volumes or segmented volumes
- Validating dcfldd acquired data
 - Use the hash option to designate a hashing algorithm of md5, sha1, sha256, sha384, or sha512
 - hashlog option outputs hash results to a text file that can be stored with the image files
 - vf (verify file) option compares the image file to the original medium

Windows Validation Methods

- Windows has no built-in hashing algorithm tools for computer forensics
 - Third-party utilities can be used
- Commercial computer forensics programs also have built-in validation features
 - Each program has its own validation technique
- Raw format image files don't contain metadata
 - Separate manual validation is recommended for all raw acquisitions

Performing RAID Data Acquisitions

- Acquisition of RAID drives can be challenging and frustrating because of how RAID systems are
 - Designed
 - Configured
 - Sized
- Size is the biggest concern
 - Many RAID systems now have terabytes of data

Understanding RAID

- Redundant array of independent (formerly "inexpensive") disks (RAID)
 - Computer configuration involving two or more disks
 - Originally developed as a data-redundancy measure
- RAID 0
 - Provides rapid access and increased storage
 - Biggest disadvantage is lack of redundancy
- RAID 1
 - Designed for data recovery
 - More expensive than RAID 0

SourceForge

- SourceForge provides several applications for security, analysis, and investigations
- For a list of current tools, see:
 - <u>http://sourceforge.net/directory/security-</u> <u>utilities/storage/archiving/os:windows/freshness:recently-</u> <u>updated</u>

Summary

- Forensics data acquisitions are stored in three different formats:
 - Raw, proprietary, and AFF
- Data acquisition methods
 - Disk-to-image file
 - Disk-to-disk copy
 - Logical disk-to-disk or disk-to-data file
 - Sparse data copy

Summary

- Several tools available
 - Lossless compression is acceptable
- Plan your digital evidence contingencies
 - Make a copy of each acquisition
- Write-blocking devices or utilities must be used with GUI acquisition tools
- Always validate acquisition
- A Linux Live CD, such as SIFT, Kali Linux, or Deft, provides many useful tools for digital forensics acquisitions

Summary

- Preferred Linux acquisition tool is dcfldd (not dd)
- Use a physical write-blocker device for acquisitions
- To acquire RAID disks, determine the type of RAID
 - And then which acquisition tool to use
- Remote network acquisition tools require installing a remote agent on the suspect computer

Thank you

