
Unit #10
Application Security

MIS5214

Agenda

• Frameworks for application security assessment

• Best practices for secure application development

• Test areas for auditing applications

• Team Project – guidance and status reporting

2MIS 5214 Security Architecture

A brainstorming framework for examining security of an application from the macro-level, based on
People – describes every aspect of the application that deals with a human

• Make sure the right people are involved in planning, design, implementation or operations, and the right stakeholders
are involved

• E.g. If the application involves end users, ensure:
• The application has controls around providing and removing access
• End users have been involved with the planning and design of components they will (to ensure usability)

Process – Describes every aspect of the application that is involved in a policy, procedure, method, or course
of action

• Review the interaction of the application with interfacing systems and verify compliance with security models
• E.g. Ensure that firewalls are in place to protect the application from external applications, users, business partners, …
• Policies and procedures should be written to support how the application is intended to be used
• Adequate documentation should exist to support technicians who need to maintain the application

Tools – Describe every aspect of the application that deals with concrete technology or product
• Ensure appropriate hardware and environment exist to support the application
• Ensure the application interfaces with recommended technologies appropriate for your intended policies and

procedures
• Verify that the application and infrastructure are tested and audited appropriately

Measures – Describe every aspect of the application that is quantifiable conceptually, such as the business
purpose or application performance

• E.g. verify that the application meets well-documented and well-thought out acceptance criteria
• E.g. if the application is intended to solve a quantifiable business problem verify that it does indeed solve the problem
• Verify that the logs are meaningful and that you can measure the performance of the application

PPTM - People, Processes, Tools, and Measures

MIS 5214 Security Architecture 3

STRIDE

A “simplified threat-risk model” which is easy to remember
Spoofing Identity

• Is a key risk for applications with many users and a single execution context at the application and database tiers
• Users should not be able to become any other user or assume the attributes of another user

Tampering with Data
• Data should be stored in a secure location, with access appropriately controlled
• The application should carefully check data received from the user and validate that it is “sane” (i.e. relevant and valid) and applicable before

storing or using it
• Data entered in the client (e.g. browser) should be checked and validated on the server and not in the client where the validation checks might be

tampered with
• Application should not send and calculate data in the client where the user can manipulate the data, but in the server-side code

Repudiation
• Determine if the application requires nonrepudiation controls, such as web access logs, audit trails at each tier, or the same user context from top

to bottom
• Users may dispute transactions if there is insufficient auditing or record-keeping of their activity

Denial of Service
• Application designers should be aware that their applications are at risk of denial of service attacks
• Use of expensive resources (e.g. large files, heavy-duty searches, long queries) should be reserved for authenticated and authorized users and

should not be available to anonymous users.
• Every facet of the application should be engineered to perform as little work as possible, to use fast and few database queries, and to avaoid

exposing large files or unique links per user to per user to prevent simple denial-of-service attacks

Elevation of Privilege
• If an application provides distinct user and administrative roles, ensure that the user cannot elevate his or her role to a more highly privileged

one
• All actions should be controlled through an authorization matrix to ensure that only the permitted roles can access privileged functionality. It is

not sufficient, for example, to not display privileged-role links

MIS 5214 Security Architecture 4

PPDIOO – Prepare, Plan, Design, Implement, Operate, Optimize

Prepare: Establishes organization and business requirements, develops a network strategy,
and proposes a high-level architecture

Plan: Identifies the network requirements by characterizing and assessing the network and
performing a gap analysis

Design: Provides high-availability, reliability, security, scalability, and performance

Implement: Installation and configuration of new equipment

Operate: Day-to-day operations

Optimize: Proactive network management; modifications to the design

from CISCO Systems

Can help considers potential network challenges for a new application system
Creates a baseline of how a network should perform and behave
• Uses the baseline to measure project success and monitor network health

MIS 5214 Security Architecture 5

OWASP (Open Web Application Security Project) Frameworks

• Vulnerabilities • Principles • Top 10 Web Application
Security Risks

MIS 5214 Security Architecture 6

Agenda

• Frameworks for application security assessment

• Best practices for secure application development

• Test areas for auditing applications

• Team Project – guidance and Q&A

7MIS 5214 Security Architecture

Static & Dynamic Application Security Testing

Static application security testing (SAST)
• Can be thought of as testing the application

from the inside out
• By examining its source code, byte code or

application binaries for conditions indicative of a
security vulnerability

Dynamic application security testing (DAST)
• Can be thought of as testing the application

from the outside in
• By examining the application in its running state,

and trying to poke it and prod it in unexpected
ways in order to discover security vulnerabilities

Some vulnerabilities can be found
only with SAST testing, others with
DAST

Testing in both ways yields the most
comprehensive testing

Many web applications that would be
traditionally scanned with DAST tools
also use a significant amount of
client-side code often in the form of
Javascript, Python, CSS, PHP, Ruby,…

This code must also be analyzed for
security vulnerabilities, typically using
static analysis

MIS 5214 Security Architecture 8

Automated application security testing tools

Many vendors provide both SAST and DAST tools

MIS 5214 Security Architecture 9

Automated application security testing tools often
provide vulnerability reports

MIS 5214 Security Architecture 10

Application Security Assessment and Recommendations

MIS 5214 Security Architecture 11

Application Security
Vulnerability
Assessment Report

MIS 5214 Security Architecture 12

IBM AppScan example

MIS 5214 Security Architecture 13

MIS 5214 Security Architecture 14

MIS 5214 Security Architecture 15

Additional best practices for secure application development

1. Defense-in-Depth

2. Positive Security Model

3. Fail Safely

4. Run with Least Privilege

5. Avoid Security by Obscurity

6. Keep Security Simple

7. Use Open Standards

8. Keep, manage and analyze logs to detect Intrusions

9. Never Trust External Infrastructure and Services

10. Establish Secure Defaults

Characteristics which can help in
quickly spotting common weaknesses
and poor controls

MIS 5214 Security Architecture 16

Defense In Depth

Layered approaches provide more security over the long term than one
complicated mass of security architecture

• Sequences of routers, firewalls and intrusion detection/protection monitoring
devices used to examine data packets, reduce undesired traffic and protect the
inner information systems

• Access Control Lists (ACLs), for example, on the networking routers and firewall
equipment to allow only necessary traffic to reach the application

• Quickly eliminating access to services, ports, and protocols significantly lowers
the overall risk of compromise to the system on which the application is
running

MIS 5214 Security Architecture 17

Positive Security Model

• Positive security models use “whitelist” to allow only what is on the
list, excluding everything else by default
• “Deny by default”

• A challenge for antivirus programs

• In contrast with negative (blacklist) security models that allow
everything by default, eliminating only the items known to be bad
• Problems:

• Blacklist must be kept up to date

• Even if blacklist is updated, an unknown vulnerability can still exist

• Attack surface is much larger than with a positive security model

MIS 5214 Security Architecture 18

Fail Safely

• An application failure can be dealt with in one of 3 ways:
• Allow

• Block

• Error

• In general, application errors should all fail in the same way:
• Disallow the operation (as viewed by the user) and provide no or minimal

information on the failure

• Do not provide the end user with additional information that may help in
compromising the system
• Put the error information in the logs, but do not provide to the user to use in

compromising the system

MIS 5214 Security Architecture 19

Run with Least Privilege

• Principle of Least Privilege mandates that accounts have the least
amount of privilege possible to perform their activity

• This includes:
• User rights

• Resource permissions such as CPU limits, memory capacity, network
bandwidth, file system permissions, and database permissions

MIS 5214 Security Architecture 20

Avoid Security by Obscurity

• Obfuscating data (hiding it) instead of encrypting it is a very weak
security mechanism
• If a human can figure out how to hide the data a human can learn how to

recover the data

• Never obfuscate critical data that can be encrypted or never stored in
the first place

MIS 5214 Security Architecture 21

Keep Security Simple

• Simple security mechanisms are easy to verify and easy to implement
correctly

• Avoid complex security mechanisms if possible
• “The quickest method to break a cryptographic algorithm is to go around it”

• Do not confuse complexity with layers: Layers are good; complexity isn’t

MIS 5214 Security Architecture 22

Use Open Standards

• Open security standards provide increased portability and
interoperability

• IT infrastructure is often a heterogeneous mix of platforms, open
standards helps ensure compatibility between systems as the
application grows

• Open standards are often well known and scrutinized by peers in the
security industry to ensure they remain secure

MIS 5214 Security Architecture 23

Keep, manage and analyze logs to help detect intrusions

• Applications should have built-in logging that is protected and easily
read

• Logs help you troubleshoot issues, and just as important – help you to
track down when or how an application might have been
compromised

MIS 5214 Security Architecture 24

Never Trust External Infrastructure and Services

• Many organizations use the processing capabilities of third-party
partners that more than likely have differing security policies and
postures than your organization

• It is unlikely that you can influence or control an external third party

• Implicitly trusting externally run systems is dangerous!

MIS 5214 Security Architecture 25

Establish Secure Defaults

• New applications should arrive or be presented to users with the
most secure default settings possible that still allow business to
function

• This may require training end users or communications messages

• End result is a significantly reduced attack surface
• Especially when application is pushed out across a large population

MIS 5214 Security Architecture 26

Agenda

✓Frameworks for application security assessment

✓Best practices for secure application development

• Test areas for auditing applications

• Team Project – guidance and Q&A

27MIS 5214 Security Architecture

Test Areas for Auditing Applications

1. Input Controls
• Review and evaluate controls built into system transactions for input data
• Determine the need for error/exception reports related to data integrity and

evaluate whether this need has been filled

2. Interface Controls
• Review and evaluate the controls in place over data feeds to and from interfacing

systems
• If the same data is kept in multiple databases and/or systems, ensure that periodic

sync processes are executed to detect any inconsistencies in the data

3. Audit Trails
• Review and evaluate the audit trails present in the system and the controls over

those audit trails
• Ensure that the system provides a means of tracing a transaction or piece of data

from the beginning to the end of the process enabled by the system

MIS 5214 Security Architecture 28

Test Areas for Auditing Applications

4. Software Change Controls
• Ensure that the application software cannot be changed without going through a

standard checkout/staging/testing/approval process after it is placed into
production

• Evaluate controls regarding code checkout and versioning

• Evaluate controls regarding the testing of application code before it is placed into a
production environment

• Evaluate controls regarding batch scheduling

5. Backup and Recovery
• Determine whether a Business Impact Analysis (BIA) has been performed on the

application to establish backup and recovery needs

• Ensure that appropriate backup and recovery controls are in place

• Ensure appropriate recovery controls are in place
MIS 5214 Security Architecture 29

Test Areas for Auditing Applications

6. Data Retention and User Involvement
• Evaluate controls regarding the application’s data retention

• Evaluate overall user involvement and support for the Application

7. Identity, Authentication, and Access Controls…

8. Host Hardening…

MIS 5214 Security Architecture 30

Agenda

✓Frameworks for application security assessment

✓Best practices for secure application development

✓Test areas for auditing applications

• Team Project – guidance and Q&A

31MIS 5214 Security Architecture

Team Project SSP Deliverable (See Guidance Notes
that follow)

http://community.mis.temple.edu/mis5214sec701sp2019online/team-project-overview/

Guidance notes

Instructions for diagrams for sections:
• 9.2 (Information System Components and Boundaries),

• 9.4 (Network Architecture)

• 10.1 (Data Flow)

These can all be based on the high-level logical network diagram you
create for section 9.4 (Network Architecture)

Be sure to include the locations of the users in your diagram

In addition to including them in your SSP, you should include and label
this diagrams in a separate PDF file document that you deliver along
with your SSP

MIS 5214 Security Architecture 33

Guidance notes
Instructions for Section 11’s Table 11-1,
only identify:

• External System (column 2)

• Connection Security (column 4)

• Data Direction (column 5)

• Information Being Transmitted (column 6)

MIS 5214 Security Architecture 34

Guidance notes

Instructions for Section 13: Only select and complete one technical
control family

MIS 5214 Security Architecture 35

From NIST SP 800-18r1 Guide for Developing
Security Plans for Federal Information Systems

Guidance notes

• Attachment 6 - Information System Contingency Plan: Only provide a
plan (include a schedule tasks with labor estimate in person-hours)
for completing Attachment 6 which is a Information System
Contingency Plan (ISCP) based on FedRAMP ISCP Template

MIS 5214 Security Architecture 36

http://community.mis.temple.edu/mis5214sec004spring2020/files/2020/03/SSP-A06-FedRAMP-ISCP-Template-6.docx

Team status reporting and security diagram
reviews…

MIS 5214 Security Architecture 37

Agenda

• Frameworks for application security assessment

• Best practices for secure application development

• Test areas for auditing applications

• Team Project – guidance and Q&A

38MIS 5214 Security Architecture

