PROJECTS CHAPTERS EVENTS ABOUT

Fownsp.

Cheat Sheets

Attack Surface Analysis Cheat Sheet

Access Control Cheat Sheet Authentication Cheat Sheet

What is Attack Surface Analysis and Why is it Important?

This article describes a simple and pragmatic way of doing Attack Surface Analysis and managing an
application’s Attack Surface. It is targeted to be used by developers to understand and manage application
security risks as they design and change an application, as well as by application security specialists doing
a security risk assessment. The focus here is on protecting an application from external attack - it does not
take into account attacks on the users or operators of the system (e.g. malware injection, social
engineering attacks), and there is less focus on insider threats, although the principles remain the same.
The internal attack surface is likely to be different to the external attack surface and some users may have
alot of access.

Attack Surface Analysis is about mapping out what parts of a system need to be reviewed and tested for
security vulnerabhilities. The point of Attack Surface Analysis is to understand the risk areas in an
application, to make developers and security specialists aware of what parts of the application are open to
attack, to find ways of minimizing this, and to notice when and how the Attack Surface changes and what
this means from a risk perspective.

Attack Surface Analysis is usually done by security architects and pen testers. But developers should
understand and monitor the Attack Surface as they design and build and change a system.

Attack Surface Analysis helps you to:

1. identify what functions and what parts of the system you need to review/test for security
vulnerabilities

2. identify high risk areas of code that require defense-in-depth protection - what parts of the system that
you need to defend

3. identify when you have changed the attack surface and need to do some kind of threat assessment

Defining the Attack Surface of an Application

The Attack Surface describes all of the different points where an attacker could get into a system, and
where they could get data out.

The Attack Surface of an application is:

1. the sum of all paths for data/commands into and out of the application, and

2. the code that protects these paths (including resource connection and authentication, authorization,
activity logging, data validation and encoding), and

3. all valuable data used in the application, including secrets and keys, intellectual property, critical
business data, personal data and PII, and

4. the code that protects these data (including encryption and checksums, access auditing, and data
integrity and operational security controls).

You overlay this model with the different types of users - roles, privilege levels - that can access the system
(whether authorized or not). Complexity increases with the number of different types of users. But it is
important to focus especially on the two extremes: unauthenticated, anonymous users and highly
privileged admin users (e.g. database administrators, system administrators).

Group each type of attack point into buckets based on risk (external-facing or internal-facing), purpose,
implementation, design and technology. You can then count the number of attack points of each type, then
choose some cases for each type, and focus your review/assessment on those cases.

With this approach, you don’t need to understand every endpoint in order to understand the Attack Surface
and the potential risk profile of a system. Instead, you can count the different general type of endpoints and
the number of points of each type. With this you can budget what it will take to assess risk at scale, and

vnn ran tall whan tha riek nrafila nf an annliratinn hace cinnifirantly rhannad

~~~~~~ . D

@ Watch | 395 W Star = 11,796

The OWASP Foundation works to improve
the security of software through its
community-led open source software
projects, hundreds of chapters worldwide,
tens of thousands of members, and by
hosting local and global conferences.

AJAX Security

Abuse Case

Access Control

Attack Surface Analysis

Authentication

Authorization Testing Automation
Bean Validation

C-Based Toolchain Hardening

C-Based Toolchain Hardening
Choosing and Using Security Questions
Clickjacking Defense

Content Security Policy

Credential Stuffing Prevention
Cross-Site Request Forgery (CSRF) Prevention
Cross Site Scripting Prevention
Cryptographic Storage

DOM based XSS Prevention

Denial of Service

Deserialization

Docker Security

DotNet Security

Error Handling

Forgot Password

HTMLS Security

HTTP Strict Transport Security
Injection Prevention

Injection Prevention in Java

Input Validation

Insecure Direct Object Reference Prevention
JAAS

JSON Web Token for Java

Key Management

LDAP Injection Prevention

Logging

Mass Assignment

Microservices based Security Arch Doc
Multifactor Authentication

Nodejs security cheat sheet

0S Command Injection Defense

PHP Configuration

Password Storage

Pinning

Protect FileUpload Against Malicious File
Query Parameterization

REST Assessment

REST Security

Ruby on Rails

SAML Security



JUL UL LU YV G UG IO UG U U U T HTUD DT Uy DU g

Identifying and Mapping the Attack Surface

You can start building a baseline description of the Attack Surface in a picture and notes. Spend a few
hours reviewing design and architecture documents from an attacker’s perspective. Read through the
source code and identify different points of entry/exit:

User interface (Ul) forms and fields
HTTP headers and cookies

APls

Files

Databases

Other local storage

Email or other kinds of messages
Run-time arguments

..Your points of entry/exit

The total number of different attack points can easily add up into the thousands or more. To make this
manageable, break the model into different types based on function, design and technology:

Login/authentication entry points

Admin interfaces

Inquiries and search functions

Data entry (CRUD) forms

Business workflows

Transactional interfaces/APls

Operational command and monitoring interfaces/APls
Interfaces with other applications/systems

..Your types

You also need to identify the valuable data (e.g. confidential, sensitive, regulated) in the application, by
interviewing developers and users of the system, and again by reviewing the source code.

You can also build up a picture of the Attack Surface by scanning the application. For web apps you can

use a tool like the OWASP ZAP or Arachni or Skipfish or w3af or one of the many commercial dynamic

testing and vulnerability scanning tools or services to crawl your app and map the parts of the application

that are accessible over the web. Some web application firewalls (WAFs) may also be able to export a
model of the application’s entry points.

Validate and fill in your understanding of the Attack Surface by walking through some of the main use
cases in the system: signing up and creating a user profile, logging in, searching for an item, placing an
order, changing an order, and so on. Follow the flow of control and data through the system, see how
information is validated and where it is stored, what resources are touched and what other systems are

SQL Injection Prevention

Securing Cascading Style Sheets
Server Side Request Forgery Prevention
Session Management

TLS Cipher String

Third Party Javascript Management
Threat Modeling

Transaction Authorization

Transport Layer Protection
Unvalidated Redirects and Forwards
User Privacy Protection

Virtual Patching

Vulnerability Disclosure

Vulnerable Dependency Management
Web Service Security

XML External Entity Prevention

XML Security

Upcoming Global Events

OWASP Projects Summit, Feb 27-29th
Global AppSec Dublin June 15-19th
Global AppSec SF October 19th-23rd

involved. There is a recursive relationship between Attack Surface Analysis and Application Threat
Modeling: changes to the Attack Surface should trigger threat modeling, and threat modeling helps you to
understand the Attack Surface of the application.

The Attack Surface model may be rough and incomplete to start, especially if you haven't done any security
work on the application before. Fill in the holes as you dig deeper in a security analysis, or as you work
more with the application and realize that your understanding of the Attack Surface has improved.

Measuring and Assessing the Attack Surface

Once you have a map of the Attack Surface, identify the high risk areas. Focus on remote entry points —
interfaces with outside systems and to the Internet — and especially where the system allows anonymous,
public access.

« Network-facing, especially internet-facing code

* Web forms

¢ Files from outside of the network

* Backwards compatible interfaces with other systems — old protocols, sometimes old code and
libraries, hard to maintain and test multiple versions

s Custom APIs — protocols etc - likely to have mistakes in design and implementation

» Security code: anything to do with cryptography, authentication, authorization (access control) and
session management



These are otten where you are most exposed to attack. Then understand what compensating controls you
have in place, operational controls like network firewalls and application firewalls, and intrusion detection
or prevention systems to help protect your application.

Michael Howard at Microsoft and other researchers have developed a method for measuring the Attack
Surface of an application, and to track changes to the Attack Surface over time, called the Relative Attack
Surface Quotient (RSQ). Using this method you calculate an overall attack surface score for the system,
and measure this score as changes are made to the system and to how it is deployed. Researchers at
Carnegie Mellon built on this work to develop a formal way to calculate an Attack Surface Metric for large
systems like SAP. They calculate the Attack Surface as the sum of all entry and exit points, channels (the
different ways that clients or external systems connect to the system, including TCP/UDP ports, RPC end
points, named pipes...) and untrusted data elements. Then they apply a damage potential/effort ratio to
these Attack Surface elements to identify high-risk areas.

Note that deploying multiple versions of an application, leaving features in that are no longer used justin
case they may be needed in the future, or leaving old backup copies and unused code increases the Attack
Surface. Source code control and robust change management/configurations practices should be used to
ensure the actual deployed Attack Surface matches the theoretical one as closely as possible.

Backups of code and data - online, and on offline media - are an important but often ignored part of a
system’s Attack Surface. Protecting your data and IP by writing secure software and hardening the
infrastructure will all be wasted if you hand everything over to bad guys by not protecting your backups.

Managing the Attack Surface

Once you have a baseline understanding of the Attack Surface, you can use it to incrementally identify and
manage risks going forward as you make changes to the application. Ask yourself:

* What has changed?
» What are you doing different? (technology, new approach, ....)
* What holes could you have opened?

The first web page that you create opens up the system’s Attack Surface significantly and introduces all
kinds of new risks. If you add another field to that page, or another web page like it, while technically you
have made the Attack Surface bigger, you haven't increased the risk profile of the application in a
meaningful way. Each of these incremental changes is more of the same, unless you follow a new design
or use a new framework.

If you add another web page that follows the same design and using the same technology as existing web
pages, it's easy to understand how much security testing and review it needs. If you add a new web
services API or file that can be uploaded from the Internet, each of these changes have a different risk
profile again - see if if the change fits in an existing bucket, see if the existing controls and protections
apply. If you're adding something that doesn't fall into an existing bucket, this means that you have to go
through a more thorough risk assessment to understand what kind of security holes you may open and
what protections you need to put in place.

Changes to session management, authentication and password management directly affect the Attack
Surface and need to be reviewed. So do changes to authorization and access control logic, especially
adding or changing role definitions, adding admin users or admin functions with high privileges. Similarly
for changes to the code that handles encryption and secrets. Fundamental changes to how data validation
is done. And major architectural changes to layering and trust relationships, or fundamental changes in
technical architecture — swapping out your web server or database platform, or changing the run-time
operating system.

As you add new user types or roles or privilege levels, you do the same kind of analysis and risk
assessment. Overlay the type of access across the data and functions and look for problems and
inconsistencies. It's important to understand the access model for the application, whether it is positive
(access is deny by default) or negative (access is allow by default). In a positive access model, any
mistakes in defining what data or functions are permitted to a new user type or role are easy to see. In a
negative access model, you have to be much more careful to ensure that a user does not get access to
data/functions that they should not be permitted to.

This kind of threat or risk assessment can be done periodically, or as a part of design work in serial /
phased / spiral / waterfall development projects, or continuously and incrementally in Agile / iterative
development.

Normally, an application’s Attack Surface will increase over time as you add more interfaces and user types
and integrate with other systems. You also want to look for ways to reduce the size of the Attack Surface



when you can by simplitying the model (reducing the number of user levels for example or not storing
confidential data that you don't absolutely have to), turning off features and interfaces that aren't being
used, by introducing operational controls such as a Web Application Firewall (WAF) and real-time
application-specific attack detection.

Access Control Cheat Sheet Authentication Cheat Sheet

) Edit on Github

Spotlight: Mercari, Inc. Corporate Supporters
0\ WhiteHat ML salesforce
Technologies
¥ mercari

@ RIPS { v Symantec. v

GitLab

Mercari is a C2C marketplace app that makes it easy for people to safely %. Security _

sell and ship their things. Launched in 2013, it's now among the largest ,S'TJou,—ney 9 bringa
peer-to-peer selling platforms globally. From fashion to toys, shoes to

electronics and beyond, Mercari's mission is to "create value in a global

marketplace where anyone can buy and sell."
Become a corporate supporter

PRIVACY SITEMAP CONTACT

Open Web Application Security Project, OWASP, Global AppSec, AppSec Days, AppSec California, SnowFROC, LASCON, and the OWASP logo are
trademarks of the OWASP Foundation. Unless otherwise specified, all content on the site is Creative Commons Attribution-ShareAlike v4.0 and provided
without warranty of service or accuracy. For more information, please refer to our General Disclaimer. Copyright 2020, OWASP Foundation, Inc.



