	_
Cryptography	
Cryptography	
MIS-5903 http://community.mis.temple.edu/mis5903sec011s17/	
	1
Cryptography History	
Substitution Monoalphabetic	
Polyalphabetic (uses multiple alphabets) uses Vigenere Table Scytale cipher (message wrapped around wooden rod)	
• Rotate	
ROT3, aka "Caesar Cipher" Transposition – values are scrambled	
Vulnerable to frequency analysis	
 Plaintext -> Encryption -> Ciphertext -> Decryption -> Plaintext Algorithm (cipher) set of rules how enciphering and deciphering 	
Kanalah affila Daimain la	
Kerckhoff's Principle	
Auguste Kerchkhoff	

• Published 1883

• Only secrecy in a cryptography system should be the key
• If too many secrets, there are more vulnerabilities to exploit

Strength of Cryptosystem • Algorithm • Secrecy of the key • Length of the key	
 Initialization vectors How components work together Cryptography strength = work factor 	
Estimate of the effort and resources to penetrate cryptosystem	
One Time Pad • Considered unbreakable if implemented properly	
 Gilbert Vernam, 1917 (aka Vernam Cipher) Uses a pad of random values Uses a binary mathematic function (XOR) Requirements: Made up of truly random values Used only once Securely distributed Secured at sites 	
At least as long as the message	
Spy-Novel Ciphers	
 Running Key – set of books Book page, line number, column count Concealment – message within a message E.g. every third word 	

Ste	gan	ngn	at	οhν	/
Jic	5u1	1061	u	211	y

- "Hiding in plain sight"
- "Security through obscurity"
 Three Components:
- Carrier signal, data stream or file that has hidden information (payload) inside
- Stegomedium medium in which the information is hidden
 Payload the information that is to be concealed and transmitted

Digital Rigl	nts Manageme	nt (DRM)
--------------	--------------	----------

- Movies/Video
 - High-Bandwidth Digital Content Protection (HDCP) HDMI, DisplayPort, DVI
 Advanced Access Content System (AACS) Blu-Ray and HD-DVD
- - Adobe Digital Experience Protection Technology
- Video Games (e.g. Ubisoft Uplay)
- Documents (e.g. Vitrium, FileOpen)
 - Restrictions on reading, modifying, removing watermarks, saving, printing, screen capture, copying

Symmetric Algorithms

- Block Cipher
 Confusion –
 Substitution; making the relationship between key and ciphertext complex.

 - Substitution, inabang size consenses
 Diffusion (Claude Shannon) —
 Transposition Single plaintext bit has influence over several ciphertext bits
 Avalanche effect (Horst Feistel) slight change = significant ciphertext change
- Stream Cipher streams of bits
 - Mathematical functions performed on each bit
 Use keystream generator to produce ciphertext

- Initialization Vectors
 Random value used with algorithm
 Two identical plaintext values encrypted with same key / randomness

-		

	7
Cryptographic Transformation	
Compression	
• Expansion	
PaddingKey mixing	
Key schedules – generate subkeys from master keys	
Symmetric - DES	
 Data Encryption Standard – 64 bit blocks, 64-bit key (56+8), 16 rounds Triple Des (3DES) – two or three keys, 48 rounds 	
- Tiple Des (3DE3) – two of tiffee keys, 46 fourius	
	1
Symmetric - Advanced Encryption Standard	
(AES) • Five finalists – MARS, RC6, Serpent, Twofish, Rijandel	
Rijandel:	
 128-bit – 10 rounds 192-bit – 12 rounds 256-bit – 14 rounds 	

Symmetric - International	Data	Encryptio	r
Algorithm (IDEA)			

- 64 bit divided into 16 smaller blocks
- 8 rounds on each block
- 128-bit key

Other Symmetric:

- Blowfish 64 bit data blocks, variable key 32-448 bits, 16 rounds
- RC4 (Rivest, '87) Stream, variable key, aka ArcFour
- RC5 (Rivest) 32, 64, or 128 block. Key up to 2048 bits
- RC6 based on RC5; increased speed

Asymmetric

- Diffie-Hellman key agreement
- - Ron Rivest, Adi Shamir, Leonard Adleman(1978)

 - Authentication as well as key encryption
 Key exchange protocol (encrypts the symmetric key)
- El Gamal
 Public key algorithm used for signatures, encryption, key exchange. (slow!)
- Elliptic Curve Cryptosystems (ECC)
 Similar to RSA; efficient; used in wireless devices
- Knapsack e.g. Merkle Hellman, insecure

_			
-			
-			
-			
_			
_			
Ī			
_			
-			
_			
-			
-			
_			
_			
_			

Message	Integ	rity
---------	-------	------

- One-Way Hash
- Message Authentication Code (MAC)

 - HMAC Hash MAC
 CBC-MAC Cipher Block Chaining MAC
 CMAC Cipher-Based MAC
- Collisions produce same value for two different messages
 - Birthday Paradox
 - 1 in 253 to be same as individual
 - 1 in 23 greater than any two

Available H	ashing A	lgorithms
-------------	----------	-----------

- MD4 (Rivest) 128-bit; no longer secure
- MD5 (Rivest) also 128-bit, but more complex than MD4
- Secure Hash Algorithm (SHA) 160-bit
 - used with Digital Signature Algorithm
- SHA-256
- SHA-384
- SHA-512

Digital Signature

- Hash value encrypted with sender's private key
- Digital Signature Standard (1991) NIST standard
- Federal Government
 - Digital Signature Algorithm (only for signatures, slower than RSA)

 - RSA
 Elliptic Curve Digital Signature Algorithm (ECDSA)

_			
Ī			
-			
-			
-			
-			
-			
-			
_			

- \bullet ISO authentication framework that uses public key cryptography and X.509
- Hybrid uses symmetric and asymmetric
- Public Key Cryptography is one piece of PKI
- Certificate Authorities trusted third party
- Registration Authority registration, but not issuance
- Certificate Revocation List
- Online Certificate Status Protocol real-time verification

- Ciphertext-Only attempt to discover key has access to ciphertext (COA)
- Known-Plaintext (brute force) (KPA)
- Chosen Plaintext (can choose which plaintext) (CPA)
- Chosen Ciphertext (may need control of the system) (CCA)
- Adaptive Chosen Plaintext Chooses subsequent plaintext based on previous ciphertext (CPA2)
- Adaptive Chosen Ciphertext Chooses subsequent ciphertext based on previous plaintext (CCA2)

Side Channel Cryptography Attacks

- Replay
- Algebraic
- Analytic
- Statistical
- Social Engineering Attacks
- Meet-in-the-Middle Attacks

		_

Questions?	