
AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

TD WS2 Guideline: Text Analytics
with Python

Before we start
● Make sure you download Anaconda and try launching Jupyter Notebook

beforehand.
● The installation instructions for TD WS 2 can be found here.

Let’s Start!
● Let's start by creating a Jupyter Notebook file named “TD WS2” in

Anaconda
● We will start by installing NLTK (Natural Language Toolkit). NLTK is a powerful

Python package that provides a set of diverse natural language algorithms.

!pip install nltk

● After that, we will import and load NLTK package to our Jupyter Notebook
● Notes: The “install" statement puts the code somewhere that Python expects

those kinds of things to be, and the “import” statement says "go look there for
something named “abc xyz” now, and make the data available to me for use".

#Loading NLTK
import nltk

https://drive.google.com/drive/folders/1frzTej1NL_yblYhU6iwSKSUQQIzdSwxz?usp=sharing
https://drive.google.com/drive/folders/1frzTej1NL_yblYhU6iwSKSUQQIzdSwxz?usp=sharing

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● Now, let’s choose a paragraph we want to analyze and put it in our code. Since
it’s almost Halloween, let’s go with a Halloween-themed short story.

The Mummified Mom Story:
Last year my daughter and her children were invited to a Halloween party. Her
older son wanted to go as Count Dracula; her daughter, as a ballerina; her younger
son, as the cabin boy in Treasure Island. Then my daughter donned her own
costume, wrapping herself in strips of white sheeting. At the party she collapsed,
exhausted, on the sofa.

“And who are you?” someone asked her.

“I am a tired mummy,” my daughter said.

● Okay, let’s put this story in our code. We use triple quotes (“”” “””) to make sure
Jupyter Notebook knows the start and the end of the string.

text = “““Last year my daughter and her children were invited to a Halloween party.
Her older son wanted to go as Count Dracula; her daughter, as a ballerina; her
younger son, as the cabin boy in Treasure Island. Then my daughter donned her
own costume, wrapping herself in strips of white sheeting. At the party she
collapsed, exhausted, on the sofa.

“And who are you?” someone asked her.

“I am a tired mummy,” my daughter said.
”””

print(text)

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

PHASE 1: Tokenization - Breaking Paragraphs
Into Smaller Pieces

1.1) Tokenization
● The first step in text analytics is tokenization. Token is a single entity that is the

building blocks for sentence or paragraph.
● This is the process of breaking down a text paragraph into smaller chunks of

text such as words or sentences.

Sentence Tokenization = Breaking down text paragraph into sentences
● In order to do tokenization, we need to download the punkt module.
● Punkt Sentence Tokenizer = divides a text into a list of sentences

nltk.download('punkt')

● Let’s write some code that will execute sentence tokenization by importing
the sent_tokenize class from nltk.tokenize module.

from nltk.tokenize import sent_tokenize

tokenized_text1=sent_tokenize(text)
print(tokenized_text1)

● You will notice that the original paragraph will be broken down into

sentences. Hence, the given text is tokenized into sentences.

Word Tokenization = Breaking down text paragraph into words
● Now, instead of using sent_tokenize class, let’s try to use word_tokenize

class from nltk.tokenize module.

from nltk.tokenize import word_tokenize

tokenized_text2=word_tokenize(text)
print(tokenized_text2)

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

1.2) Removing Punctuation
● Notice how punctuation (period, comma, semi-colon, exclamation point, etc.)

are tokenized as individual words? We want to eliminate punctuation in our
analysis as those are considered as noise in the text, which won’t yield a
meaningful insight!

● To filter out those punctuation from our given text, we use for loop in Python
and isalpha() method

● isalpha() method returns “True” if all characters in the string are alphabets,
Otherwise, It returns “False”.

remove_punct=[]
for word in tokenized_text2:
 if word.isalpha():
 remove_punct.append(word)

● Let’s print out the remove_punct variable that we just created. You should

see that the punctuations are gone now!

print(remove_punct)

1.3) Frequency Distribution
● Think of Frequency Distribution as counting words in a given text. It will

allow you to see which words are used the most in the paragraph. Let’s import
its module and apply it to our remove_punct.

from nltk.probability import FreqDist
freqdist = FreqDist(remove_punct)
print(freqdist)

● You will get something similar to this: <FreqDist with 56 samples and 75

outcomes>
● Now, let’s see the most three common words!

freqdist.most_common(3)

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● [('her', 5), ('daughter', 4), ('my', 3)] → So from here we can see that “her” is the
most frequent word which appears 5 times in the story!

● How about the most 5 common words?

freqdist.most_common(5)

● Should we plot it on a graph for better data visualization?

Frequency Distribution Plot

import matplotlib.pyplot as plt
freqdist.plot()
plt.show()

● We will get a graph that looks like this.

● This is a very clustered graph since the graph includes every single word in

this graph as the x-values. Let’s include only the first 15 words by adding
number 15 in the plot() function.

Frequency Distribution Plot

freqdist.plot(15,cumulative=False)

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

plt.show()

● You will get a graph that looks like this:

● When we do cumulative = True, we will have a cumulative frequency chart,

which is calculated by adding each frequency from a frequency distribution
table to the sum of its predecessors. Cumulative graphs are usually used to
showcase trends, number, progress, or rate over a period of time.

● In our case, since we want to compare each value to one another, we do not
need a cumulative chart.

1.3) Exercise
● Now that you understand how to code in Python to break down paragraphs

and identify the most frequent words, let’s try to do it with a different
paragraph!

● We recommend that you create a new Jupyter Notebook file named
“Exercise” for the exercise to avoid confusion!

● Choose any story from this link Funny Halloween Stories and try it out
yourself!

● You can copy and paste all the codes that we have learned so far to the new
Jupyter Notebook.

● Remember that you have to download the packages, modules, and classes
again since this is for a new “Exercise” notebook.

https://www.rd.com/advice/funny-halloween-stories/

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● Great, from now on, you will be able to plug in any paragraph you want to
analyze!

STORY: Trick or Tryst?
text = """Desperate for a Halloween costume to wear to a party, my 43-year-old
daughter had an inspired idea. She put on a slinky black dress, fishnet stockings
and balanced a small tabletop on her head. On it was a lamp, a champagne glass
and an ashtray with two cigarette butts. She went as a one-night stand. And won
first prize."""

from nltk.tokenize import sent_tokenize
tokenized_text1=sent_tokenize(text)
print(tokenized_text1)

from nltk.tokenize import word_tokenize
tokenized_text2=word_tokenize(text)
print(tokenized_text2)

remove_punct=[]
for word in tokenized_text2:
 if word.isalpha():
 remove_punct.append(word)

print(remove_punct)

from nltk.probability import FreqDist
freqdist = FreqDist(remove_punct)
print(freqdist)

import matplotlib.pyplot as plt
freqdist.plot(15)
plt.show()

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

PHASE 2: Stopwords Removal

2.1) Stopwords
● Great! Before we start this Phase, make sure you switch back to your first

notebook, the “TD WS2” notebook.
● Stopwords are considered as noise in the text. Text may contain stopwords

such as is, am, are, this, a, an, the, etc.
● In NLTK for removing stopwords, you need to create a list of stopwords and

filter out your list of tokens from these words.
● Let’s create a list of stopwords for English language

nltk.download('stopwords')

from nltk.corpus import stopwords
stop_words=set(stopwords.words("english"))
print(stop_words)

● Let’s print out the Tokenized Sentence that we created in Phase 1 after

removing the punctuations

print("Tokenized Sentence:",remove_punct)

● We will get something like this:

● To filter out those stopwords from our given text, we use for loop in Python

remove_swords=[]
for w in remove_punct:
 if w not in stop_words:
 remove_swords.append(w)

● Let’s print out the remove_swords var that we just created.

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

print("Tokenized Sentence:",remove_swords)

● As you can see from the result, we have two sentences. The remove_swords

var in this phase has no stopwords that exist in the remove_punct var in
Phase 1.

● Let’s run the Frequency Distribution method again after we remove the
stopwords.

freqdist_filtered = FreqDist(remove_swords)
print(freqdist_filtered)

● You will receive a result that looks like this: <FreqDist with 38 samples and 43

outcomes>
● Notice that in Phase 1, we have 56 samples and 75 outcomes. But now in Phase 2,

we only have 38 samples and 43 outcomes. So we eliminated the stopwords!
● Let’s graph it!

freqdist_filtered.plot(15,cumulative=False)
plt.show()

● Notice that the stopwords like “her” or “my” are gone in this graph.

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

2.2) Exercises
● Alright, remember the exercise you did for Phase 1? We will reuse that

paragraph and try to eliminate stopwords from that text. Let’s do it.
● Make sure to go back to the “Exercise” notebook.
● Since everyone chose different stories, we have made an Exercise Keys

document that you can use to compare your results!

from nltk.corpus import stopwords
stop_words=set(stopwords.words("english"))

print("Tokenized Sentence:",remove_punct)

remove_swords=[]
for w in remove_punct:
 if w not in stop_words:
 remove_swords.append(w)

print("Filtered Sentence:",remove_swords)

freqdist_filtered = FreqDist(remove_swords)
print(freqdist_filtered)

freqdist_filtered.plot(15)
plt.show()

PHASE 3: Lexicon Normalization
● After removing stopwords, there is still another type of noise in text. For

example, the word “connection” or “connected” or “connecting” has a
common root word "connect".

● This is where lexicon normalization comes in. It reduces derivationally related
forms of a word to a common root word.

● There are two methods for Lexicon Normalization: Stemming and
Lemmatization.

Stemming = a process of linguistic normalization, which reduces words to
their word root word or chops off the derivational affixes.

● First, let’s import stemming module and class in our code

https://docs.google.com/document/d/17nRan0myUGIV_2HoHl9tyWpaGsnSknvh8wexrFM_yvA/edit?usp=sharing
https://docs.google.com/document/d/17nRan0myUGIV_2HoHl9tyWpaGsnSknvh8wexrFM_yvA/edit?usp=sharing

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

Stemming
from nltk.stem import PorterStemmer
#from nltk.tokenize import sent_tokenize, word_tokenize

ps = PorterStemmer()

● Now we will create the stemmed version of our text.
● Let’s print out the Filtered Sentence from Phase 2 again

print("Filtered Sentence:",remove_swords)

● Similar to what we did when we removed stopwords, we will use another for

loop. Now we can print out the Stemmed Sentence we just did

stemmed_text=[]
for w in remove_swords:
 stemmed_text.append(ps.stem(w))
print("Stemmed Sentence:",stemmed_text)

● You will see how every word has become lowercase. Some of the words go
back to its root word correctly, but some do not. Hence, there are still
limitations of Stemming, and that’s why Lemmatization is developed!

Lemmatization = a better approach than stemming
● Lemmatization is usually more sophisticated than stemming. Stemming

works on an individual word without any knowledge of the context.
● For example, The word "better" has "good" as its lemma. This will be missed by

stemming because it requires a dictionary look-up.

● Let’s import lemmatization module and class in our code
● In order to lemmatize, you need to create an instance of the

WordNetLemmatizer() and call the lemmatize() function on a single word

nltk.download('wordnet')

from nltk.stem.wordnet import WordNetLemmatizer
lem = WordNetLemmatizer()

from nltk.stem.porter import PorterStemmer

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

stem = PorterStemmer()

● Let’s test both Stemming and Lemmatization methods with the word “flying”

word = "flying"
print("Stemmed Word:",stem.stem(word))
print("Lemmatized Word:",lem.lemmatize(word,"v"))

● You will see that Lemmatization produces a better guess than Stemming: fli

vs fly
● The “v” is to provide the tag as the second argument to lemmatize() to provide

more accuracy as sometimes, the same word can have multiple lemmas
based on the meaning/context

print(lem.lemmatize("stripes", 'v'))
strip

print(lem.lemmatize("stripes", 'n'))
stripe

PHASE 4: Understand POS Tagging

4.1) POS Tagging
● Next, we are moving on to POS Tagging, aka Part-of-Speech tagging.
● What is POS Tagging you ask? It is used to identify the grammatical group of

a given word. Whether it is a NOUN, PRONOUN, ADJECTIVE, VERB, ADVERBS,
etc. based on the context.

● Thus, it looks for relationships within the sentence and assigns a
corresponding tag to the word.

● Let’s use this sentence as an example: ‘T’ for Temple ‘U’, University! Fight, fight,
fight, for the Cherry and the White, for the Cherry and the White, we will fight
fight fight!

● Make sure to put them in triple quotes!

sentence = “““ ‘T’ for Temple ‘U’, University! Fight, fight, fight, for the Cherry and the
White, for the Cherry and the White, we will fight fight fight! ”””

print(sentence)

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● Again, to analyze the sentence, let’s first break it down into smaller chunks.

tokens=nltk.word_tokenize(sentence)
print(tokens)

● Okay, let’s apply POS Tagging to our sentence using nltk.pos_tag()

nltk.download('averaged_perceptron_tagger')

nltk.pos_tag(tokens)

● After we execute the code, here is the few lines of the result:

 ('for', 'IN'),
 ('the', 'DT'),
 ('Cherry', 'NNP'),
 ('and', 'CC'),
 ('the', 'DT'),
 ('White', 'NNP'),
('we', 'PRP'),
 ('will', 'MD'),
 ('fight', 'VB'),
 ('fight', 'RB'),
 ('fight', 'NN'),

● DT stands for determiner “the”
● NNP stands for singular proper noun since “Cherry” is capitalized.
● CC stands for coordinating conjunction “and”

● For more descriptions on each POS, check out this article here:
● https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-taggi

ng-in-pythons-nltk-library-2d30f70af13b

4.2) Exercises
● Okay, so for this exercise, let’s pick one sentence from your Halloween story.
● Make sure to go back to the “Exercise” notebook.

https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-pythons-nltk-library-2d30f70af13b
https://medium.com/@gianpaul.r/tokenization-and-parts-of-speech-pos-tagging-in-pythons-nltk-library-2d30f70af13b

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

sentence = """It was Halloween night when a driver called our road-service
dispatch office complaining that he was locked out of his car"""
tokens=nltk.word_tokenize(sentence)
print(tokens)

nltk.pos_tag(tokens)

PHASE 5: Sentiment Analysis

5.1) Text Classification
● Okay, moving on, let’s go back to your “TD WS 2” notebook.
● Text classification is one of the important tasks of text mining.
● It has various applications in today's computer world such as spam detection,

task categorization in CRM services, categorizing products on E-retailer
websites, or classifying the content of websites for a search engine.

5.2) Performing Sentiment Analysis using Text
Classification

● Uptill Phase 4, you have learned data pre-processing using NLTK. Now, you
will get into a tiny bit of Sentiment Analysis using Text Classification.

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● Monkey Learn also created a simple Sentiment Analysis test, check it out here:
https://app.monkeylearn.com/main/classifiers/cl_pi3C7JiL/

● We have a sample dataset that you can use to see the ranking of different
values based on sentiment analysis.

● The dataset is on "Sentiment Analysis of Movie, Reviews". It is also located in
TD WS 2 Folder for Students. The dataset’s name is sentimentanalysis.tsv

● Let’s download it and examine it!

● This data has 5 sentiment labels:
○ 0 - negative
○ 1 - somewhat negative
○ 2 - neutral
○ 3 - somewhat positive
○ 4 - positive

● Now that you have download the dataset, let’s import it in our Jupyter
Notebook

● In order to import it, we need to find the file path.
○ For Mac Users,

■ Click on the file sentimentanalysis.tsv
■ Then click this shortcut: Command + Option + C
■ Then click Command + V to paste the file path.

○ For Windows Users,

■ Hold the Shift key while right click the file
■ Choose “Copy as path” from the drop down menu
■ Then click Ctrl + V to paste the file path

● After you have the file path, replace thefilepath below with your file path.

import pandas as pd

data=pd.read_csv('thefilepath’, sep='\t')

● For Nhi's laptop, the code above will be like this:

data=pd.read_csv('/Users/Nhi/Desktop/sentimentanalysis.tsv', sep='\t')

● Okay, let's print the first few rows of this dataset out using head() method.

data.head()

https://app.monkeylearn.com/main/classifiers/cl_pi3C7JiL/

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● What about the first 10 rows instead?

data.head(10)

● Awesome! Now let’s get a quick overview of this dataset

data.info()

● Here, Python tells us that we have a total of 4 columns. It includes the column
names, data types (int64 or object), and the entries.

● The only column we want to focus for now is the Sentiment column.
● Let’s count the total entries for each value of the Sentiment column.

data.Sentiment.value_counts()

● Cool, from the result, we see that “2” or “neutral” has the most entries.
● For better visualization, let’s graph it! We don’t have to import matplotlib

again since we already did it in earlier phases.

Sentiment_count=data.groupby('Sentiment').count()
print(Sentiment_count)

plt.bar(Sentiment_count.index.values, Sentiment_count['Phrase'])
plt.xlabel('Review Sentiments')
plt.ylabel('Number of Review')
plt.show()

● You should see this graph

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

● And that concludes our workshop today!
● To recap, we learned how to:

○ Break down paragraphs into smaller pieces like sentences or words.
○ Remove punctuation and stopwords to increase the accuracy of our

analysis.
○ Use Stemming or Lemmatization to turn words to their base words.
○ Understand Part-of-Speech tagging.
○ Create simple graphs in Python
○ Scratch a bit of the surface of Sentiment Text Analysis!

LEARNING RESOURCES
● To read more about Text Analysis, go to this Monkey Learn article:

https://monkeylearn.com/text-analysis/
● Put your new Python skills to the test and challenge yourself by doing this

tutorial!
https://www.dataquest.io/blog/tutorial-text-analysis-python-test-hypothesis

● To take a bootcamp course on Python:
https://www.udemy.com/course/complete-python-bootcamp/

GIVE US YOUR FEEDBACK!
● Please use this link http://bit.ly/TD-SAT2 to submit the attendance and

feedback form for this TD Saturday Workshop 2.
● Thank you for joining Nhi and Michelle today! Have a great weekend :)

https://monkeylearn.com/text-analysis/
https://www.dataquest.io/blog/tutorial-text-analysis-python-test-hypothesis
https://www.udemy.com/course/complete-python-bootcamp/
http://bit.ly/TD-SAT2

AIS Technical Development Workshop 2: Text Analytics
Date: Saturday, October 19, 11-1pm
Nhi Nguyen & Michelle Purnama (Student Leader)

