AIS Technical Development Workshop 1: Data Visualization with Python
Date: Saturday, February 15, 11-1pm, Alter 232
Nhi Nguyen - nhi@temple.edu

[bookmark: _imec2ba3es21]TD Workshop 1 Guideline: Data Visualization with Python
[bookmark: _kitm2adb1hoa]Before we start
· Make sure you download Anaconda and try launching Jupyter Notebook beforehand.
· The installation instructions for TD WS 1 here or via our AIS website here.
[bookmark: _yl91cu92lpq9]General Concepts
[bookmark: _huwhvgjrfitb]	Essential Python libraries
· Pandas = data manipulation and analysis
· Numpy = support for large, multi-dimensional arrays and matrices
· Matplotlib = simple low-level plotting libraries
[bookmark: _1qrw13v3fdn5]Styles of syntax in Matplotlib
· MATLAB-style Syntax → More structured
· Object-oriented Syntax: → More control and personalization
· Hybrid - a Combination of MATLAB-style and Object-oriented Syntax

· Today, we will mostly focus on MATLAB-style Syntax since it’s more friendly for people who just begin to learn Python!

[bookmark: _4pqlx9vqpvr8]

[bookmark: _5dm84rnxwe47]Setting up our Jupyter Notebook
[bookmark: _qu6299ogmq3n]	Download the zip file
· Go to our Shared Folder and download the zip folder named “datavisualization”.
· Once it is downloaded, unzip it!
· We recommend that you put the downloaded folder right in the Desktop screen.
· Now, open Anaconda and choose launch Jupyter Notebook
· You should direct to the location of the folder we just downloaded.
[bookmark: _c35527c8ldpp]Part 1: Line Graphs
[bookmark: _b3ozvhcu10yi]Make a simple plot
· Open the notebook named 1) Line Graph
· To make a graph, we first need to import the Python libraries to help us make graphs. We will use Matplotlib for this first graph.

	import matplotlib.pyplot as plt

· .pyplot is a module within the matplotlib library
· plt is an alias matplotlib

	The plot() method - takes arrays and turn them to charts

	The show() method - used to invoke the required plot
· Make sure that this show() method is the final command you put in the cell. Other commands need to be run before this show() method in order for Jupyter Notebook to execute your command!

· Create 2 arrays named x and y. Each array consists of 4 numerical values
· Graph 2 arrays together using plot()

	# Declare two arrays x and y. Each array has 4 numerical values.
x = [1,2,3,4,5]
y = [5,10,15,8,12]

Use plot() to create a graph
plt.plot(x,y)
plt.show()

· Yay! So we have successfully created our first graph!

	The title() method
· Let’s make it a bit fancier by adding a title. We will go with “My first graph in Python ever!”

The xlabel() and ylabel() methods
· Ok, now we will name the labels for x and y axes. We will just use ‘X label’ and ‘Y label’ for names as of now.

	The figure() method and the figsize attribute
· figure() is use to manipulate and adjust things to your figure
· figsize attribute can change the size of your figure. Let’s add that inside our plot() method to make our graph a bit bigger with (10,6)
· Make sure that this plt method comes first before other plt commands

The color attribute
· The c parameter accepts strings to turn it to color.
· Right now, we have a blue line as our default color. Try creating a similar chart and changing it to green!

· Additionally, some colors can be accepted using its initial or first letter instead of the entire word.
· Look at this table for examples of some colors you can choose from.

	String
	Color

	‘black’
	black

	‘b’ or blue’
	blue

	‘g’ or ‘green’
	green

	‘r’ or ‘red’
	red

	‘c’ or ‘cyan’
	cyan

	‘w’ or ‘white’
	white

	‘y’ or ‘yellow’
	yellow

	‘m’ or ‘magenta’
	magenta

· So, for green, you can either do ‘g’ or ‘green’ as a parameter for color.

The linestyle (ls) attribute
· Similar to the color attribute, the linestyle attribute gives you a variety of styles for your lines. Look at this picture below:
[image:]
· As default, we will always have a straight connected line for graph when we first plot it. Let’s change our line to a few different styles.

The fontsize attribute
· Let’s add fontsize = 20 to our title to make it bigger!

The savefig() method - save your graphs from Jupyter Notebook to your computer as photos
· The path
· Add dpi (dots per inch) parameter adjust the resolution

· Let’s go ahead and save your graph to the picture folder that we have in our zip folder.
· The name should be firstgraph
· The type is .png
· We will choose dpi = 300 this time (You can mess around if you want)
· The path should be ‘picture/firstgraph.png’

	plt.savefig('picture/firstgraph.png', dpi=300)

· Go back to your folder and check if the new png file you just made is there. (It should be!)
[bookmark: _es3n0tfe8vjc]DIY Exercise:
· Now that you know a little bit about line graph. Let’s try making a new graph using these information below:
· Declare a new variable A that holds this array: [5,1,1,2,4,5,6,8,9,9,5]
· Declare a new variable B that holds this array: [1,4,6,7,7,6,7,7,6,4,1]
· Plot these two arrays A, B to a same line graph
· Make the color of your choice. But we recommend red!
· Give your chart a happy title and labels. Also include your name in the title.
· Save it to the picture folder. You will need this for your submission.
· [Demo Time] Now, we will demo the exercise to make sure you got everything correctly. 😁

	

[bookmark: _iadtsfxkeddd]

[bookmark: _15qvhrg1dxuv]Make multiple lines in one graph
· Below, we have a table for the 12-year revenue in different regions for company CandyCane

	CANDYCANE’S 2019 REVENUE (in millions)

	
	Asia
Region
	EU
Region
	North American Region

	January
	300
	120
	400

	February
	320
	110
	450

	March
	280
	140
	520

	April
	340
	105
	500

	May
	460
	115
	480

	June
	500
	120
	570

	July
	450
	120
	600

	August
	420
	145
	610

	September
	510
	110
	580

	October
	550
	105
	630

	November
	600
	100
	610

	December
	470
	120
	590

· Declare four variables to store four different arrays:
· month - this will have the strings for twelve months
· for strings, make sure to use single quotation ‘ ‘
· asian - this will have values for the Asian region
· eu - this will have values for the EU region
· na - this will have values for the North American region

	# Declare four : month, asian, eu, and na

month = ['Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec']
asian = [300,320,280,340,460,500,450,420,510,550,600,470]
eu = [120,110,140,105,115,120,145,110,105,100,120]
na = [400,450,520,500,480,570,600,610,580,630,610,690]

· Do a line graph for Asian region.

· Now, to add more lines to the graphs, you will reuse the plot() method in the same cell
· Make sure that the month variable is always placed in the first parameter of the plot() method since it is our shared x axes.

· Tadaa! Awesome. Now we just need to make this graph more clear and concise

· Make sure to add title for our graph “Total Regional Revenues of CandyCane in 2019” and add labels “Months” and “Millions” for our axes.

The legend() method
· You probably notice by now that we need legend to differentiate which line is which. This is where we need the legend() method.
· All you need to do is add the label parameter in your plot for each line.
· Using a new cell, copy the same graph as above. Let’s create label for all three lines.
· Then we use the legend()
· If we don’t put anything inside the () for legend, it will have the default value that Jupyter Notebook chooses for us.
· You can change the location with the loc parameter.
· Accepts strings, integers, and tuples
· Here is the list of values you can put in the loc parameter.

	String
	Integer

	‘best’
	0

	‘upper right’
	1

	‘upper left’
	2

	‘lower left’
	3

	‘lower right’
	4

	‘right’
	5

	‘center left’
	6

	‘center right’
	7

	‘lower center’
	8

	‘upper center’
	9

	‘center’
	10

· Let’s try the ‘upper right’ for loc.

· The loc parameter also accepts a 2 element tuple x, y
· Let’s make a legend to be right next to the graph on the right, instead of being inside the graph!
	plt.legend(loc=(1,0))

[bookmark: _6hxaza5z3x0x]

[bookmark: _snbqpyvcs9mc]Part 2: Pie Charts
[bookmark: _ufidcu2yp54c]	Create a simple pie chart
· Go ahead and open a new notebook named 2) Pie Chart
· Below, we have a table for different browser’s market share in 2018:
	Market Share in 2018

	Browser Name
	Market Share (in percentage %)

	Chrome
	40.88

	Safari
	27.26

	Firefox
	9.39

	Internet Explorer
	8.22

	Others
	14.25

· The same old stuffs, let’s declare two variables for browser and market_share

The pie() method
· To plot a pie chart, we will use the pie() method
· market_share will be in the chart
· Turn browsers to label with the labels parameter

The startangle attribute - adjust the position of the slices
· Try it with 90.

The explode attribute
· What if we want to make Firefox stand out from the pie chart? We could use the explode attribute.
· Declare a new variable called part_to_explode. We will give other browsers the value of 0, and Firefox the value of 0.2
· Add the explode attribute to our pie() method

· Great, now add a title with your name in it save it as piechart.png in your picture folder. You will need this for the submission.

[bookmark: _yt3b1qk2lm6a]DIY Exercise:
· Create a pie chart for this information below
	Total percentage of students in each class level

	Class level
	Total students

	Freshman
	20

	Sophomore
	35

	Junior
	32

	Senior
	13

· Add title with Your Name - pie chart (Example: Nhi-pie chart)
· Add the explode attribute and apply it to the class Sophomore
· Save it as piechart.png to the picture folder.

· [Demo Time] Now, we will demo the exercise to make sure you got everything correctly. 😁
	

[bookmark: _wmepz0re6pra]

[bookmark: _5wkh38rbodd]Part 3: Bar Charts
[bookmark: _7e58acf5lhoc]Load Database - excel files
· Open the notebook named 3) Bar Chart
· Import three libraries of Python: pandas, matplotlib and numpy
· Specify inline flag to make figure appear to be aligned with your notebook

· Look at the languageranking.xlsx file, located inside our data folder. We gathered this data from the TIOBE website.

The read_excel() method - load an excel file to Jupyter Notebook
· Since our dataset is located inside data folder, this is the relative path ‘data/languageranking.xlsx’

· We will declare a new variable called df. This is a shortcut for dataframe.

	Understand the Dataset
· Before we do any visualization or manipulation to our dataset, we have to examine our date. This will help us:
· Understand what are some data types that we have
· Check the validity of the dataset
· Assure that all values are loaded correctly

The dtypes method - let you check the data types in each column of your dataset

The shape method - will give you the number of rows and the number of columns in your dataset

The head() and tail() methods
· head() will give you the first 5 rows as default. If you want to load 10, simply put 10 inside the head parameter. Try getting the first 6 rows of this dataset

· tail() will give you back the last 5 rows as default. Try loading the last 2 rows

The info() - to have a more in-depth look into our dataset
· It will also tell you whether you have null or non-null values in your database.

	

Rename the Columns
· To make it more efficient, we will rename our current columns to the ones with the underscore between words.

The rename() method - used to rename one column.
· We will try rename the first column from Programming Language to programming_language

	#Change one column using the rename() method
df = df.rename(columns={'Programming Language': 'programming_language'});
df

	The columns attribute - used to rename multiple columns at the same time
· Let’s rename the remaining columns using this attribute

	#Rename the columns using columns attribute
df.columns = ['programming_language', 'ratings' ,'change' ,'ranking_2019', 'ranking_2020']
df

[bookmark: _btzkrysfl798]Convert pandas df to numpy arrays
· For matplotlib, we need to have the numpy arrays in order to make charts, so we need to convert our df to numpy arrays.

The loc attribute - used to single out each column.
· Let’s try to get the first column ranking_language out of the current dataset by using the variable programming_language

	#Single out the programming_language column
programming_language = df.loc[:,'programming_language'].values
programming_language

· Let’s do this for the rest of the columns
	#Use loc for the remaining columns
ratings = df.loc[:,'ratings'].values
change = df.loc[:,'change'].values
ranking_2019 = df.loc[:,'ranking_2019'].values
ranking_2020 = df.loc[:,'ranking_2020'].values

· Great! We now have everything we need to start creating a bar chart!
[bookmark: _9tmhq99qfhnt]Simple Bar Chart
	The bar() method - used to create bar charts.
· Let’s create a bar chart to see the changes of different languages 	

The barh() method - used to create horizontal bar graphs.

The xticks method
· xticks() and its attribute rotation will help you rotate the name of the programming languages for better visualization.

[bookmark: _95y2tctf385k]	More complex Bar Chart
· Below, we have a table for test grades from 4 students:
	Test Grades

	Student Names
	First Exam
Grade
	Second Exam
Grade

	 Andrew
	80
	90

	Bethany
	95
	97

	Chuck
	75
	80

	Diana
	90
	88

· Let’s first declare 3 arrays: student_name, first_exam, and second_exam

· To create multiple bars in one chart, we will call out plt.bar() multiple times

· You can already see that there is overlap. We just need to add “buffer” among the bars.
· Create a new variable called index with the numpy arange of 4
· Create another variable called width and give it a value of 0.3. Add this width to the second plt.bar() method.
· Now run the code again.
· Now add the xticks to change from index to student names

	# Create index variable
index = np.arange(4)

Create width variable
width=0.30

Create the graph again
plt.bar(index,first_exam, width)
plt.bar(index+width,second_exam, width)

Add xticks()
plt.xticks(index+0.15,student_name)

[bookmark: _1iaat5wds26r]DIY Exercise:
· With the bar graph we are currently have, let’s add more information in here
· Add the title with Your Name in it. Example: Nhi - Bar Graph
· Add Student Names for xlabel
· Add Grades for ylabel
· Save it as bargraph.png. You will need this graph for your submission.

· [Demo Time] Now, we will demo the exercise to make sure you got everything correctly. 😁

	

[bookmark: _kpme1tcwyork]Part 4: Histograms
[bookmark: _66hvfmgs8tmn]Create a simple histogram
· Create a variable name x
· Using the random() method from numpy, generate 1000 random number

The hist() method - used to create a histogram
· It takes two parameters:
· the numbers from x
· the number of bins
[bookmark: _qbuv9kjq56cx]DIY Exercise:
· Generate 5000 numbers
· Divide it to 20 bins
· Create a histogram for those number
· Change the color to any color other than the default color
· Add the title with your name in it. Example: Nhi - histogram
· Save it as histogram.png. You will need this graph for your submission.

· [Demo Time] Now, we will demo the exercise to make sure you got everything correctly. 😁

	

[bookmark: _2472j3bq9cwd]

[bookmark: _hpc4emdxkniz]Learning Resources
· This online class Data Visualization for Python via LinkedIn Learning is very helpful for newbies
· Real Python is here to provide you some interesting topics that you can do with Python: https://realpython.com/tutorials/data-viz/
· Matplotlib main page: https://matplotlib.org/index.html
· Places to find FREE data sets: https://www.dataquest.io/blog/free-datasets-for-projects/
[bookmark: _s2357cmx9u9y]Submission
· Go to our Shared Folder and download the file “FirstName_LastName_TDWS1”
· Fill in the information and include the pictures we have done in all 4 DIY Exercises
· Change the file name to include your name
· Submit the file via the attendance link
[bookmark: _5u7j2kwkjom7]GIVE US YOUR FEEDBACK!
· Please use this link here to submit the attendance and feedback form for this TD Saturday Workshop 1.
· Make sure you submit the word document with all four graphs we created.
· Thank you for joining us today! Have a great weekend :)

image1.png

