

 Does Software Process
Ambidexterity Lead To Better

Software Project Performance?
 Narayan Ramasubbu, Anandhi Bharadwaj, Giri Tayi

Working paper. Sept, 2001 – Please do not cite without prior permission

 1

Does Software Process Ambidexterity Lead To Better Software Project Performance?

Abstract

Plan-based and agile software development processes seem diametrically opposed in their

approaches, with the former emphasizing discipline and control and the latter promoting flexibility and

improvisation. Similar tensions in organizational contexts where efficiency versus flexibility

considerations simultaneously jostle for management attention has led to the recognition that

ambidexterity or the ability to manage seemingly conflicting demands is an important precursor to

organizational success. In this study, we extend the idea of ambidexterity to software development

processes and empirically examine the performance implications of the ability of software project teams

to pursue process designs that simultaneously facilitate both control and flexibility. Utilizing data from a

quasi-experiment involving 424 large commercial software projects of a multinational software services

firm, we employ a potential outcomes empirical methodology to examine the causal linkage between

software process ambidexterity and project performance. Our results show that projects that encountered

frequent requirement changes, larger and complex code-bases, new technologies, higher levels of end-

user engagements, and smaller, inexperienced teams tend to choose ambidextrous software process

designs over a pure plan-based approach. We find that ambidextrous process design positively contributes

to better project performance, including on the average about 9% higher productivity, 50% reduction in

delivered defects, 12% reduction in internal defects, and 3% improvement in overall profitability.

Complementing the archival data analysis with an in-depth qualitative study of the projects pursuing

ambidextrous process designs, we enumerate the different mechanisms employed by the project teams to

balance control requirements with needs for realizing flexibility. We discuss the implications of our

results and elucidate potential pathways to achieve and sustain ambidextrous process designs in software

firms.

Key Words: Ambidexterity, Software Process, Software Engineering, Agile Processes, Control,

Flexibility, Quality Assurance

 2

Does Software Process Ambidexterity Lead To Better Software Project Performance?

1. Introduction

 Even as software systems have become indispensable to almost every aspect of a firm‘s value

chain, developing high quality and cost effective software continues to remain a major challenge for the

software industry. The software industry has been described as a hypercompetitive industry (Lee et al.

2010) marked by high velocity innovation (Brown and Eisenhardt 1997) and technological change

(Schmalensee 2000) where process innovations have been key to success. Tracing the history of

software process innovations, Austin and Devin (2009), recount how the industry evolved from ad hoc

software development (Dijkstra 1972) to plan-based approaches that called for an emphasis on planning

to anticipate changing conditions and a focus on standards that reduced idiosyncratic interdependence

across the different stages of the software development process (Boehm 1988; Cox 1990).

 Plan-based approaches to software development have led to improvements in development

productivity, quality and maintainability of the developed software (c.f., Harter et al. 2000, 2003;

Ramasubbu et al. 2008); yet they have been criticized for promoting inflexibility, or the inability to

respond effectively to rapidly changing user requirements especially in more turbulent environments (e.g.,

Aaen 2003; Highsmith 2002; Maruping et al. 2009). Critics of plan-based approaches contend that

software development approaches have to remain flexible enough to be able to revisit specifications and

refine requirements even in the late stages of development, especially in dynamic environments (Austin

and Devin 2009; Harris et al. 2009). An alternate process paradigm described as agile software

development has emerged as a response to these concerns and emphasizes iterative processes and frequent

re-planning designed to adjust to unanticipated changes and new requirements (c.f., Beck et al. 2001;

Boehm and Turner 2003b; Nerur and Balijepally 2007).

Although plan-based and agile approaches seem diametrically opposed in their approach to the

design and development of software, with the former emphasizing discipline and control and the latter

promoting flexibility and improvisation, recent academic research has focused on reconciling the

differences and examining the factors involved in choosing an appropriate software process. A key insight

that has emerged from research on these two approaches stresses the environmental contingencies that

determine the relative efficacies of plan-based versus agile approaches (Boehm and Turner 2003b; Austin

and Devin 2009). Empirical research that has examined how firms choose between these two approaches

show that software processes that are aligned with business strategies produce better outcomes, such as

when firms pursuing differentiation strategies choose agile approaches to software development

(Slaughter et al. 2006).

 3

While it is important to distinguish the choices and outcomes of plan-based versus agile process

designs, a more nuanced approach calls for empirical research into ways of usefully combining plan-

based and agile techniques (Austin and Devin 2009; Harris et al. 2009). Similar tensions in other

organizational contexts where efficiency versus flexibility considerations simultaneously jostle for

management attention has led to the recognition that ambidexterity or the ability to manage seemingly

conflicting demands is an important precursor to organizational success (e.g., Adler et al. 1999; Gibson

and Birkinshaw 2004; Raisch and Birkinshaw 2008). The idea of ambidexterity in organizations

recognizes that demands in task environments are always to some degree in conflict and so there are

always trade-offs to be made. Although these trade-offs can never entirely be eliminated, successful

organizations reconcile them to a large degree, and in doing so enhance their long-term competitiveness

(Adler et al. 1999; Raisch et al. 2009).

In this study, we extend the idea of ambidexterity to software development processes and

empirically examine its impact on software project performance. We define software process

ambidexterity as the ability of a software development project team to pursue process designs that

simultaneously facilitate both control and flexibility. Understanding the drivers and consequences of

software process ambidexterity is an important step towards uncovering mechanisms that shift the key

tradeoffs observed in software development such as flexibility versus efficiency (Harris et al. 2009),

productivity versus quality (Krishnan et al. 2000; MacCormack et al. 2003), and development versus

maintenance performance (Banker et al. 1998), which tend to lockdown software firms in vicious cycles

of sub-optimal performance.

While the logic of software process ambidexterity has its roots in prior conceptual work bridging

the views of plan-based and agile methods (e.g., Paulk 2001; Boehm and Turner 2003a, 2003b; Lee et al.

2006, 2007; Vinekar et al. 2006), much of the analysis has relied on anecdotal or limited sample case-

based evidence, and rigorous large-sample empirical investigation of software process ambidexterity has

been scarce. The aim of this study is to fill this critical gap. We examined a large scale field quasi-

experiment on software processes at a leading multinational software services company involving 424

commercial software projects, and used a potential outcomes research methodology (c.f., Rosenbaum and

Rubin 1983; Mithas and Krishnan 2009) to analyze the observational data for answering the research

question: does software process ambidexterity lead to better software project performance?

Subsequently, we complemented the archival data analysis with an in-depth qualitative study of the

projects that pursued ambidextrous software process designs to enumerate the different balancing tactics

employed by the teams.

 4

The remainder of the paper is structured as follows: In the next section, we provide the

background literature on plan-based and agile software process designs and discuss the antecedents of

software process ambidexterity. In section 3, we report the quasi-experiment at our research site and our

data collection procedure. In section 4, we present our potential outcomes data analysis and results. Then,

in section 5, we enumerate our findings from a qualitative study of the project teams following

ambidextrous process designs with a focus on uncovering and inferring the balancing tactics used by the

teams. We discuss insights from the results in section 6 and draw implications for an actionable pathway

to achieving software process ambidexterity along with acknowledging the limitations of the study and

highlighting avenues for future research.

2. Software Process Ambidexterity

We begin with an overview of plan-based and agile software development process designs

highlighting the underlying characteristics and the tradeoff challenges that these process designs impose

on software development teams. Then, drawing on the organizational ambidexterity literature, we show

how these two approaches may be reconciled through ambidextrous software process design and discuss

the antecedents of ambidextrous process design.

2.1. Plan-based Software Processes

 Grounded in principles of systems engineering and total quality management, a plan-based

approach to software development emphasizes structured processes throughout the development

lifecycle. Detailed plans for the requirements analysis, software design, development, and testing phases

are drawn out, and as a project progresses in the development lifecycle adherence to the plans is

monitored and documented. Through detailed documentation, plan-based software processes enforce

traceability and control of different activities of the project members, inherently disciplining them.

Moreover, detailed project metrics are collected at different stages of the project and used for planning

and statistical quality control procedures (c.f., Gopal et al. 2002; 2005).

The Capability Maturity Model (CMM) (Paulk et al. 1993) is a popular and influential software

process framework that embodies a typical plan-based process design. The framework was designed to

aid firms to improve their software process maturity in planned evolutionary stages (from an ad hoc level-

1 to optimized level-5). In a plan-based process improvement paradigm, such as the one advocated by the

CMM framework, adherence to the prescribed software processes is periodically audited and assessed by

internal and external auditors. To be successfully assessed at a certain capability level, it is typically

mandated that a project team need to consistently practice at least 90% of the Key Process Areas (KPAs)

pertaining to the chosen capability level, which is governed by the detailed specifications of the plan-

 5

based process framework (e.g., CMM) adopted by the project. Thus, a plan-based software process design

enforces a metric-driven and disciplined approach to measure, control, and continuously improve

software practices, enabling organization-wide standardization of processes, improving predictability, and

reducing uncertainties through improved planning – important tenets of systems engineering (Hall 1962)

and total quality management (Hendricks and Singhal 1997).

Plan-based software processes have been widely adopted by software firms worldwide, and there

is a continued growth and refinement of the commercially available prescriptive plan-based process

frameworks (SEI-PARS 2010). Research shows that adoption of the key processes embodied in the

CMM family of process frameworks is associated with positive performance outcomes in co-located (e.g.,

Krishnan and Kellner 1999; Harter et al. 2000; Harter et al. 2003) as well as in distributed software

development (e.g., Ramasubbu et al. 2008; Cataldo and Nambiar 2009).

Despite the many advantages, plan-based processes have been implicated for their inflexibility

and for giving little room for reflection and improvisation (Aaen 2003; Galliers and Swan 1997; Boehm

and Turner 2003b). Aaen (2003) argues that plan-based software process designs have serious

shortcomings including those of ―substituting technological contact for human interface, gold-plating

processes at the expense of knowledge flow, restricting reflective dialogue between participants and

leaving no room for experimentation and improvisation‖ (pp.88). Also, since a plan-based process design

attempts to standardize organizational processes, it tends to propagate a blueprint approach to software

development, which externalizes process knowledge by formalizing it outside the process user‘s thought

process, and thereby creating artificial structures far removed from actual developers‘ culture, eventually

stymieing improvisation and experimentation (Aaen 2003). These limitations of plan-based process

designs hinder a software firm‘s capability to improvise responses to changing customer needs (due to

changes in project requirements, budgets, schedules, etc) and market conditions – essentially losing out

on the flexibility dimension of the flexibility-efficiency tradeoff dynamics observed in software

development projects (Harris et al. 2009).

2.2. Agile Software Processes

 Agile software processes emerged as a response to the persistent problem of inflexibility inherent

in the plan-based approach to software development. Conboy (2009), offering a robust definition of agile

software process, notes that agile processes facilitate ―the continual readiness of an ISD [Information

Systems Development] method to rapidly or inherently create change, proactively or reactively embrace

change, and learn from change while contributing to perceived customer value (economy, quality, and

simplicity)…‖ (pp. 340). Despite considerable variation in the agility characterizations among the many

commercially available agile software process frameworks (c.f., Boehm and Turner 2003b; Conboy

 6

2009), there is a strong commonality in their adherence to iterative software production and the lean

manufacturing principle of ―elimination of waste‖ (Succi 2006).

Through a lean production approach, agile software process designs focus on ―individuals and

interactions over processes and tools; working software over comprehensive documentation; customer

collaboration over contract negotiation; responding to change over following a plan‖ (Beck et al. 2001).

Similar to lean manufacturing (Cusumano 1994), the agile software process design allows independent

programmers led by trustworthy project managers to respond to changing customer needs by making

rapid and quick changes to any aspect of a software project without facing the bureaucratic hurdles of

approvals and detailed justifications that are typical of plan-based software processes. In contrast to plan-

based software processes, agile processes encourage social inquiry and collective action, focusing on

improvisation and rapid adaptations to respond to changes. Agile software processes tend to align more

towards the flexibility dimension in the flexibility-efficiency tradeoff dynamics seen in software

development (Harris et al. 2009). For example, a large-scale study at Microsoft reported design flexibility

and the ability to quickly respond to requirements changes as one of the top benefits realized due to the

adoption of agile software processes (Begel and Nagappan 2007). Dyba and Dingsoyr (2008) summarize

the findings of more than thirty empirical studies that reported positive impacts of agile software process

design on a variety of performance outcomes including improved relationships with customers, the ability

to incorporate requirement changes even at later stages of a project, improvements in team cohesion and

programmer job satisfaction, and significant improvement in product quality.

However, agile software process designs are not without limitations. Doubts have been raised

over the ability of agile software process designs to scale for large software projects, especially those

distributed across different time zones (Turk et al. 2002; Lee et al. 2006; Begel and Nagappan 2007).

Some studies have reported a negative impact of agile software processes on productivity, mostly citing

work pattern disruptions and other inefficiencies induced due to the frequent informal meetings

encouraged by agile methods (Begel and Nagappan 2007; Dyba and Dingsoyr 2008). Parnas (2006)

highlights the dangers of a ―no document lean process‖ culture propagated by agile software process

designs and notes that it is risky to rely on oral interactions to communicate detailed and precise software

requirements. Similarly, Lee et al. (2006) note that conventional agile methods need to be modified to

embrace more rigor and discipline in order to overcome communication and knowledge sharing

challenges in globally distributed software development. Other scholars have highlighted a variety of

organizational-, people-, and technology- related challenges of adopting agile software processes,

especially for firms new to an iterative, collaboration-centric software development paradigm (Nerur et

al. 2005).

 7

2.3. Ambidexterity: Balancing Discipline and Agility

Plan-based and agile software processes represent opposite ends of a process design continuum

emphasizing efficiency and control on the one side and flexibility and responsiveness to change at the

other end. Given these extreme ends at the software process design continuum, process designs that are

capable of balancing the tradeoff at different stages of a software project development cycle, rather than

the choices at the extremes, can be expected to yield superior performance outcomes. For example, Adler

et al. (1999) reported how a Toyota subsidiary achieved superior flexibility-efficiency combinations

through dynamic adjustments of the routine (efficiency-focused) and non-routine (experimentation-

focused) components of its organizational processes during turbulent periods of model changeovers.

Organizational ambidexterity, i.e., the ability of firms to be responsive to changes while at the same time

being able to carry out current activities efficiently, has a rich research tradition spanning several

disciplines (e.g., Duncan 1976; Gibson and Birkinshaw 2004; O‘Reilly and Tushman 2004; Raisch and

Birkinshaw 2008). A key postulation of the theoretical view is that ambidextrous firms institute process

designs that dynamically combine exploitation (standardized, efficiency-focused routines) and

experimentation (improvised, flexible, agility-focused routines) activities in order to shift challenging

tradeoffs and achieve superior performance outcomes. In the Information Systems Development (ISD)

literature, several theoretical conceptualizations of ambidextrous software process designs that support

both flexibility and control have been proposed (e.g., Vinekar et al. 2006; Lee et al. 2007). Drawing on

tenets from the theory of dynamic capabilities and control theory, Harris et al. (2009) propose controlled-

flexible process designs that adopt ―emergent outcome controls‖ as a way to avoid the sub-optimal

process choices at the extremes of the process design continuum.

Broadly, three key categories of antecedents for ambidextrous process capabilities have been

identified in the organizational literature, namely, structural-, contextual-, and leadership- based

antecedents (Raisch and Birkinshaw 2008). Structural antecedents, as the name implies, refers to the

structural mechanisms that are put in place to deal with important tradeoffs that organizations face. Such

mechanisms include, for example, spatial separation with separate units in charge of plan-based and agile

processes and temporal partitioning with the same unit using both plan-based and agile process at

different points in time. Contextual antecedents refer to the systems, processes, and beliefs that a firm

puts in place to encourage individuals to handle the conflicting demands on their time in a desired way. In

the software development context, this includes, for example, coping mechanisms for individuals dealing

with the conflicting demands of documentation versus experimenting with new technologies (Lee et al.

2006). Finally, the role of leadership, including the support of senior executives has been identified as an

important antecedent of organizational ambidexterity.

 8

In the ISD literature, Vidgen and Wang (2009), propose three principles rooted in complex

adaptive systems theory to design ambidextrous software processes that can lead to better performance:

matching or exceeding rates of change in the environment, creating necessary conditions for self-

organization, and creating routines for synchronizing exploration and exploitation activities. Austin and

Devin (2009) developed a contingency framework that establishes the key conditions for the viability of

ambidextrous process designs that realize efficiencies without sacrificing flexibility. The framework

posits that an ambidextrous process design is viable only when it leads to a reduction in reconfiguration,

coordination, and context-dependent experimentation costs leading to surpluses in software production.

Based on their examination of 22 globally distributed software projects, Lee et al. (2006) propose a set of

coping strategies that promote both flexibility and rigor in global software development and help teams

respond to environmental changes efficiently. Boehm and Turner (2003b) propose a framework

consisting of several software project-specific contextual variables such as the capability of the

development team, customer involvement, requirements volatility, project size, and code complexity to

balance agility and discipline in process designs.

In summary, much of the theoretical work on ambidextrous software process design takes a

distinctly prescriptive approach, laying out the conditions and parameters of ambidextrous design choices,

with the underlying and untested assumption that such ambidexterity leads to better software project

performance. We set out to explicitly test this assumption in the current study. With the goal of

establishing a causal linkage between ambidextrous software process design and software project

performance, we conducted an empirical investigation using a quasi-experimental setup.

3. Ambidextrous Process Design: Quasi-Experiment at Research Site

Our research site is a leading multi-national software development firm operating in 55 countries

with over a hundred thousand employees and more than 6 billion dollars in revenues in 2010. A majority

of the software development centers operated by the firm were assessed at CMMI level-5
1
 and the firm

was also a recipient of the IEEE Software Process Achievement award (IEEE SPA 2010). The firm had a

centralized Software Engineering Process Group (SEPG) that was responsible for governance of

development processes. The SEPG had invested heavily in standardizing the development processes

prevalent in the firm through the rigorous deployment of a plan-based process paradigm using the CMMI

process framework. While project-specific tailoring of the CMMI Key Process Areas (KPAs) was

allowed, the tailoring of processes and usage of any non-standard processes employed by individual

1 CMMI is an integrated process improvement framework developed by the Software Engineering Institute at the

Carnegie Mellon University. Level-5 of the CMMI is the highest maturity level indicating quantitatively controlled

and well-optimized processes.

 9

projects typically needed prior approval and were actively monitored by the SEPG personnel. All project

teams included dedicated Software Quality Assurance (SQA) personnel who were independent project

team members reporting directly to the SEPG and not to the respective project managers.

While the plan-based process paradigm implemented using the CMMI family of process

frameworks had served the firm well, the SEPG wanted to adequately prepare itself for a turbulent

environment of software process diversity as the firm embarked on a period of rapid business growth

through ambitious acquisitions and expansions to new markets. Senior executive management

enthusiastically supported and worked with the SEPG towards the launch of an organization-wide

initiative to introduce a ―controlled-flexible‖ process design that fused agile software processes with the

existing CMMI plan-based process framework. Separate financial resources were allocated for the

initiative that covered training and other miscellaneous needs. A chosen SEPG team championed the

initiative on a full-time basis and no other production duties (i.e., activities concerning a live commercial

project) were assigned to this team. Thus, the structural, contextual, and leadership based process

capabilities, which serve as important antecedents of organizational ambidexterity (Raisch and

Birkinshaw 2008), were adequately fulfilled in the context of our research site.

To develop the new controlled-flexible process design, the SEPG teams mapped the extensive

CMMI KPAs with the chosen agile process frameworks (Extreme Programming (XP) and SCRUM) for

operations under a seamless and uniform process governance framework
2
. The SEPG also implemented a

set of collaboration and agile-methods specific tools for aiding projects to collect appropriate metrics and

integrate them with the central project and process database of the firm. It is noteworthy to mention that

while the SEPG had allowed more diversity of project-level software processes, no extensive changes

were made to the central process governance structures, including the presence of independent SQA

personnel in projects. Thus, the firm had put in place the adequate control mechanisms necessary to

govern the introduction of new agile process components into established organizational routines.

The SEPG began to roll out the newly developed ―controlled-flexible‖ process designs to newly

starting projects by inviting ―heavyweight‖ project managers to participate in a pilot roll out. During the

pilot roll out, project managers and team members who volunteered to use the new ―controlled-flexible‖

process design in their projects were first provided with adequate training in agile software process

methods (XP and SCRUM) and the process mapping framework before they proceeded to tailor their

project-level production processes. The initial success of the pilot projects and the positive perceptions of

the participating project teams provided the necessary impetus for a broad roll out of the ambidextrous

2 A generalized example of such a mapping of CMM KPAs and Extreme Programming framework can be found in

Paulk 2001.

 10

―controlled-flexible‖ process design to all worldwide development centers of the firm. The choice of

process design options (and several training modes) available for project teams was widely advertised

throughout the firm. Project managers and team members of all newly starting projects had the full

autonomy to choose between the new ambidextrous ―controlled-flexible‖ process design and the

standardized (and well-established) plan-based process design depending on their own project contexts.

At the time of our data collection, 154 projects had adopted an ambidextrous process design instead of a

pure plan-based approach.

3.1.1. Data Collection from the Quasi-Experiment

We collected data from our research site in three phases. In the first phase, we conducted multiple

field observations spanning over a month when one of the authors was resident at the research site. We

interviewed the executive management and SEPG of the firm to understand the organizational context of

the software projects-level data that we had planned to collect. Table 1 maps the key antecedents

discussed in the organizational ambidexterity and process literature with our firm-level observations from

the first phase of data collection. As mentioned in the previous section, our observations presented in

Table 1 confirms that the empirical context exhibited the important structural-, contextual-, and

leadership-related antecedents of ambidexterity identified in the literature, and that the quasi-experiment

at the research site provided an excellent context to examine the effects of software process ambidexterity

on project performance outcomes.

In the second stage of our data collection, we utilized the software process selection and

comparison framework proposed by Boehm and Turner (2003a, 2003b, pp.25-58) as a conceptual

foundation to collect project-level data. The framework posits consideration of quantitative metrics such

as the capability of the development team, customer involvement, requirements volatility, project size,

and code complexity to assess the specific contextual requirements of a software project team in order to

derive hybrid designs that balance agility and discipline. The second stage of our data collection effort

resulted in an archival data set from 424 commercial software projects completed by the firm. The 424

projects were the sample used in a recent CMMI capability reassessment exercise by an external team of

CMMI auditors from KPMG. Since these projects had been audited multiple times by the external KPMG

auditors and the firm‘s SEPG team, high confidence can be placed on the reliability and accuracy of the

data. The variables in our data set gathered in the second stage of our data collection are presented in

Table 2.

In the third stage of our data collection, we embarked on a qualitative study through in-depth

discussions with the project managers, team leaders, and team members of 154 software projects that

implemented ambidextrous software process designs over a six-month period. The qualitative study

 11

complements the large scale econometric analysis of the archival data collected in the second stage. The

main goal of the qualitative study was to uncover in richer detail the individual balancing strategies that

the projects teams employed in their ambidextrous process designs.

Table 1. Summary of Firm-level Observations

 Literature Reference Observation at our research site

Ambidextrous Process Design Decision Factors

Ambidexterity

benefits
Raisch and Birkinshaw

(2008);

Austin and Devin

(2009)

 Ability to accommodate process diversity due to mergers and

acquisitions.

 Rapid business growth and survival in a hyper-competitive

industry.

Ambidexterity

costs

 Increase in risks due to loss of predictability and control.

 Additional governance expenditures.

Organizational Antecedents of Ambidexterity

Structure

Gibson and Birkinshaw

(2004);

Raisch and Birkinshaw

(2008)

 Independence and autonomy of SEPG personnel and Project

Management personnel.

Context

 Adequate support for project personnel in designing, tailoring,

processes and reporting metrics.

 Voluntary participation in experimentation.

Leadership
 Executive management support.

 Adequate financial resources for process design experiment.

Governance and Performance of Ambidextrous Process Design

Emergent

Outcome

Controls

Harris et al. (2009);

Maruping et al. (2009)

 Incremental metrics collection for different iterations.

 Facility for both plan-based and improvised and collective

decision making (through collaborative tools).

Common

Platform

Lee et al (2006, 2007,

2009);

Vinekar et al. (2008)

 Common SEPG governance of all process designs (through

common mapping of KPAs and metrics).

 Technology readiness through appropriate collaborative tools.

Project Context

and Performance

Boehm and Turner

(2003b)

 Detailed project-level metrics collected for statistical quality

control purposes.

 Refer to Table 2 for list of variables.

It is important to note that we did not experimentally control the allocation of the different

software process designs for the projects, but only observe the choices made by the software teams and

the corresponding performance consequence of those choices. In the absence of random assignment,

observational data from the quasi-experiment encounters selection problems, and therefore causal

interpretation by comparing the performance outcomes of groups following two different process designs

becomes problematic. Potential outcomes methodology overcomes this difficulty by viewing causal

effects as a comparison between two potential outcomes at a given time corresponding to a treatment that

was applied, and addresses the selection bias problem through propensity score matching techniques

 12

(Rosenbaum and Rubin 1983; Dehejia and Wahba 2002). Potential outcomes research method has been

widely utilized in statistics, economics, and sociology to examine issues of causality, similar to our

research question, through observational data (c.f. Rubin 2005). More recently, Mithas and Krishnan

(2009) articulate the use of the methodology to answer research questions related to the information

systems domain. The potential outcomes research methodology that we employ to analyze our quasi-

experimental data is explained in the next section and closely resembles the approach outlined by Mithas

and Krishnan (2009).

Table 2. Archival Data Variable Definitions

Variable Definition

Software process

ambidexterity

This is the treatment variable in the quasi-experiment; coded as 1 if projects used the

―controlled-flexible‖ process design; coded as 0 if projects used the CMMI plan-based

process design

Productivity Function Points / Total project effort

In-process defects Count of defects logged in the project before project delivery to the customer

Delivered defects
Count of defects logged in the project after project delivery to the customer (during the

warranty period)

Profitability % Profits / Total cost of the project

Requirements

volatility
% Total effort spent on rework due to change in customer requirements

Newness

Dummy variable coded as 1 if the technology or/and design involved in the project was

new to the project team (no prior experience). The value was self-reported by project

managers.

Client involvement % Total effort spent on engaging with end users

Reuse % Code that was reused from existing libraries (either at the firm or from the customer)

Team size Full time headcount of personnel involved in the project

Team experience Average professional work experience of project team (in years)

Project size Forward counted function points

Project manager

certification

Dummy variable coded as 1 if the project manager possessed any professional

certifications (e.g., PMI, SCRUM professional, etc); 0 otherwise

Contract
Dummy variable coded as 1 if the project followed a fixed price contracting scheme; 0

for time and materials

4. Archival Data Analysis

4.1. Average Treatment Effect for Ambidextrous Process Design

The first step in implementing a potential outcomes-based analysis through propensity score

matching is to identify the treatment, outcomes of interest, and other covariates. In this study we define

the choice of ambidextrous process design as the treatment, project performance variables as outcomes,

 13

and the several ambidexterity antecedents identified through prior research as covariates. The causal

effect we are interested in analyzing is the performance outcomes for the projects that chose an

ambidextrous process design for software production. Since the covariates we selected for analysis were

derived from a variety of well-established theories spanning the organizational ambidexterity, control

theory, complex-adaptive systems, and software engineering literatures, we are confident in making the

strong ignorability assumption involved in propensity score matching (Rosenbaum and Rubin 1983;

Rosenbaum 1984) – i.e., we assume that the selection bias because of the lack of random treatment is

mostly due to the correlation between the observed covariates and process design, and not because of

other unobserved mechanisms. In section 4.3, we provide a sensitivity analysis to estimate the extent to

which our study may be vulnerable to what we may have missed. Table 3 compares the observed

characteristics of projects that chose an ambidextrous process design with the projects that chose the

regular plan-based process of the firm.

Table 3. Characteristics of Treatment and Control Groups Before Matching

Variable
Treated Sample

(Ambidextrous process)

Control Sample

(Plan-based process)

Sample size N 154 270

Requirements volatility 20.27*** 12.83

Newness 0.543*** 0.233

Client involvement 22.214*** 14.18

Reuse 4.577*** 2.007

Team size 9.5143 11.407*

Team experience 3.898 3.7445

Project size 1757.5* 1291

Project manager

certification
0.521** 0.393

Contract 0.521 0.585

Note: Significance levels for differences in means using t-tests on the larger of the two

numbers across treatment and control groups; *p <0.10;**p<0.05;***p<0.01. F-statistic of

Hotelling‘s T-squared test for all covariates was significant at P<0.01.

From Table 3, we can see that there are statistically significant differences across the variables in

the treated and control samples, lending support to the view that the choice of ambidextrous process

design by certain projects was likely a non-random choice. On average, as highlighted in prior conceptual

literature (Boehm and Turner 2003b; Vinekar et al. 2008; Austin and Devin 2009) projects that

encountered higher level of requirements changes, end user engagements, and worked with newer

technologies preferred ambidextrous processes over pure plan-based process designs. Also, smaller teams

and projects that worked on larger code-bases and those with project managers who possessed

professional certifications chose the ambidextrous process design. Note that the treatment and control

groups have not yet been matched using propensity scores to account for the non-random assignment.

 14

In order to adjust for the non-random assignment in the quasi-experiment data, we calculated the

propensity scores (i.e., the propensity of a project to use ambidextrous process design) using a logit model

and employed a kernel-matching estimator. Our specification of the logit model was informed by prior

theory regarding the antecedents of ambidexterity (section 2.3) and is given in equation 1.

logit(ambidextrous process choice) = 0 + 1*(Requirements volatility) +

2*(Newness) + 3*(Client involvement) + 4*(Reuse) + 5*(Team

size) + 6*(Team experience) + 7*(Project size) + 8*(Project

manager certification) + 9*(Requirements volatility) +

10*(Contract) + ε …….Eq(1)

Table 4. Logit Parameter Estimates for Propensity Score Calculation

Variable
Ambidexterity

(logit model)

Requirements volatility 0.016*** (0.007)

Newness 1.629*** (0.00)

Client involvement 0.0745***(0.000)

Reuse 0.132*** (0.004)

Team size -0.057*** (0.004)

Team experience -0.139** (0.019)

Project size 0.192*** (0.002)

Project manager certification 0.382 (0.145)

Contract 0.231 (0.387)

Chi-Square 137.55*** (0.00)

Log-likelihood -202.919

Goodness of fit AIC = 1.004, BIC = -2098.752

Note: The model included an intercept; robust p-values in parenthesis;

*p <0.10;**p<0.05;***p<0.01

The logit parameter estimates are presented in Table 4. The Chi-squared test of the logit model shows that

the selection model is significant compared with a model with no explanatory variables. Thus, we can

conclude that the projects that chose ambidextrous process design differ significantly from those that

chose plan-based process design with respect to the observed covariates. As posited by prior conceptual

studies, projects that encountered frequent requirement changes, new technologies, higher levels of end

user engagements, and smaller teams tend to choose ambidextrous software process designs over a pure

plan-based approach. In contrast to expositions of prior research, we observe that experienced personnel

at our research site preferred plan-based approaches and projects that handled larger (and more complex)

code-bases chose ambidextrous process designs, suggesting the presence of both uncertainty-avoiding and

risk-taking behavior profiles among project teams at the research site.

When we employed kernel matching to calculate the propensity scores, matching estimators

could not identify treatment effects for four observations that did not fall in the region of common support

 15

(between propensity score estimations and kernel matching estimations). Bias stemming from non-

overlapping support is typically attributed to selection biases, and since we lost only four observations, it

is not a signficant concern for our analysis. Table 5 lists the characteristics of the treatment and control

groups after matching. As compared to the disparities between the treatment and control groups before

matching (Table 3), we can see that the matched treated and control sample are very close to each other

with respect to the observed covariates. Thus, a considerable amount of bias induced due to non-random

assignment in the quasi-experiment has been reduced through propensity score matching.

Table 5. Characteristics of Treatment and Control Groups After Matching

Variable
Treated Sample

(Ambidextrous process)

Control Sample

(Plan-based process)

Sample size N 154 270

Requirements volatility 20.025 18.681

Newness 0.537 0.558

Client involvement 21.966 22.75

Reuse 4.1881 3.9969

Team size 9.625 10.53

Team experience 3.8 4.1

Project size 1800 2462.6

Project manager certification 0.507 0.539

Contract 0.529 0.542

Note: t-tests for differences in means were performed and no differences were found even at

p≤0.10, suggesting a good matching on all observed covariates. We also conducted

Hotelling‘s t-squared test for all covariates. The resulting F statistic was not significant.

In order to assess the performance implications of ambidextrous process designs and establish a

causal linkage between process choice and several dimensions of project performance, we computed the

average treatment effect of ambidextrous process design. Using the propensity scores, we utilized the

Gaussian function for Kernel matching, to calculate average treatment effect on the treated sample across

productivity, delivered defects, in-process defects, and overall project profitability variables. These results

are presented in Table 6. We find that the ambidextrous process design positively contributes to achieving

better project performance, including on the average about 9% higher productivity, 50% reduction in

delivered defects, 12% reduction in internal defects, and about 3% improvement in overall profitability.

This result establishes the causal linkage between software process ambidexterity and better project

performance and answers the key research question of the study. While we have empirically established

that ambidextrous process designs improve performance, given the turbulent project environments and

varying contextual factors, it is not clear if all projects benefit equally from process ambidexterity. We

assess this question in the next section by analyzing treatment effect heterogeneity.

 16

Table 6. Overall Treatment Effect on Treated Using Kernel Matching

 Treated Control Difference

Productivity

Before Matching 0.266 0.132 0.133

After Matching* 0.267 0.243
0.023**

(9.46%)

Delivered defects

Before Matching 28.293 27.963 0.329

After Matching* 29.1 58.244
-29.148**

(-50.04%)

In-process defects

Before Matching 517.979 463.144 54.834

After Matching* 509.081 580.424
-71.343**

(-12.29%)

Profitability

Before Matching 44.477 39.243 5.234

After Matching* 44.413 41.678
2.734**

(%)

Note: *Kernel Matching using Gaussian function; **Average treatment effect on the treated

4.2. Treatment Effect Heterogeneity

In this section, we analyze the heterogeneity of the treatment effect to examine whether all

software projects benefited equally from an ambidextrous software process design. Following guidelines

from prior research (Dehejia and Wahba 2002; Mithas and Krishnan 2009), we used propensity score

stratification and classified all observations in to five subclasses based on estimated propensity scores.

We made sure that the covariates balanced across treatment and control units in each of the five strata

enabling a fair comparison of the treated and control groups. Figure 1 shows the distribution of propensity

scores of treated and control subjects in each stratum. Based on the propensity scores, projects in stratum

1 were predicted to have the lowest propensity to adopt an ambidextrous process design whereas projects

in stratum 5 had the highest propensity to use ambidextrous process design for their operation. Figure 2

shows the variation of the estimated average treatment effect, i.e., the effect of choosing an ambidextrous

process design on the four performance variables that are used in this study within each stratum of

projects.

The results from our treatment heterogeneity analysis imply that projects that were least likely to

adopt an ambidextrous process choice benefit more if they chose an ambidextrous process design. For

example, adoption of the ambidextrous process design by the projects in stratum 1 would result in about

141% increase in productivity, 71% reduction in delivered defects, 17% reduction in internal defects,

43% improvement in profitability – overall a significant improvement in project performance. On

average, the projects in stratum 1 (low propensity to adopt ambidextrous processes) had personnel with

more professional experience. Our results show that if these highly experienced personnel were provided

 17

with agile process methodology training and encouraged to balance their chosen plan-based approach

with elements of agile methodologies as mapped by the SEPG, significant performance benefits could be

realized.

Figure 1. Propensity Score Distribution Across Strata

Note: AMB: ambidextrous process design; STD: standard plan-based process design

Projects in stratum 5 (projects that were more likely to adopt an ambidextrous process) exhibit an

interesting behavior. On average, they perform poorly with respect to productivity (33% lower) but

significantly outperform with respect to decreasing delivered defects (83% lower defects). A significant

chunk of the projects in this stratum were very large projects (with respect to code-base size) that chose to

adopt the ambidextrous process design. These projects seem to depict the classic productivity-quality

tradeoff encountered in large software products (Krishnan et al. 2000) – they seem to focus on improving

quality at the expense of productivity. Despite the presence of such a tradeoff, through an ambidextrous

design of their process, these projects are still able to post better overall performance with respect to

profitability (12% higher).

In sum, our analysis of the treatment effect heterogeneity shows that not all software projects

benefit equally along all the four project performance outcomes by adopting an ambidextrous software

process design. We discuss the implication of this result for the design of ambidextrous processes in

section 6.

0
.2

.4
.6

.8
1

E
s
ti
m

a
te

d
 P

ro
p
e
n

s
it
y
 S

c
o

re

1 2 3 4 5

AMBSTD AMBSTD AMBSTD AMBSTD AMBSTD

 18

Figure 2. Treatment Effect Heterogeneity

4.3. Sensitivity Analysis

We analyze the sensitivity of estimated causal effects presented in Table 6 to potential violations

of the strong ignorability assumption of the propensity score methodology (Rosenbaum 1984). These

results are presented in Table 7. The sensitivity analysis tests the extent to which our results from the

propensity score analysis is robust to any potential unobserved characteristics that we did not account for

in the ambidextrous process choice model (logit model specified in equation 1). Gamma reported in Table

7 measures the hypothetically induced differences to treatment and control group assignments as a result

of potential unobserved characteristics. For example, Gamma=5 when compared to Gamma=1 signifies a

500% difference in treatment and control group assignments (from the one used by this study) due to

potential unobserved characteristics. Our results reported in Table 7 show that even at a very large

hypothetically induced bias (differences to treatment and control group assignments), the causal effects

predicted by our analysis are robust. Thus, high confidence can be placed on our results and the

theoretically guided choice of covariates used for potential outcomes analysis of this study.

0

10

20

30

40

50

60

1 2 3 4 5

P
ro

fi
ta

b
li

ty
(%

)

Stratum

0

10

20

30

40

50

60

70

80

1 2 3 4 5

D
e

li
ve

re
d

 D
e

fe
ct

s

Stratum

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5

In
-P

ro
ce

ss
 D

e
fe

ct
s

Stratum

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5

P
ro

d
u

ct
iv

it
y

Stratum

Plan-basedAmbidextrousPlan-basedAmbidextrous

Plan-basedAmbidextrous Plan-basedAmbidextrous

 19

Table 7. Sensitivity Analysis of Ambidextrous Process Design
Gamma* Significance Level

Productivity

1 0

5 0

5.5 1.2e
-15

6 1.2e
-14

Delivered Defects

1 0

5 0

5.5 2.2e
-16

6 3.2e
-15

In-Process Defects

1 0

5 0

5.5 5.6e
-16

6 8.8e
-15

Profitability

1 0

5 0

4.5 1.1.e
-16

5 5.9e
-15

Note: Sensitivity analysis on the average treatment effect on the treated; *Log

odds of differential assignment to treatment because of unobserved factors

5. Qualitative Study

 The main goal of our qualitative study was to uncover patterns on how the project teams went

about balancing the plan-based and agile components in their ambidextrous software process designs in

order to achieve superior project performance. The qualitative study involved discussions with project

managers, module leaders, and team members of the 154 software projects that followed ambidextrous

process design for software development (i.e., the treated sample in the quasi-experiment). We held a

total of thirty group discussion sessions in three rounds over a six-month period. Each discussion session

had at least one project manager, module or team leader, and programmer and lasted about an hour. The

first round of discussions were open-ended and focused broadly on describing the projects, client

relationships and behavior, work breakdown structures, specific challenges encountered in the projects,

technologies involved, project performance, and unique software processes followed in the projects

including what the participants considered as best practices. Similar to other qualitative software process

studies (Sarker and Sarker 2009), we analyzed the data from our discussions in an iterative fashion using

constant comparisons and allowing for inductive reasoning.

Our analysis of the first round of discussions corroborated the broad patterns observed in the

archival data analysis, but also raised several questions on how the teams went about balancing the plan-

based and agile components. We therefore conducted two more rounds of discussions with the same set of

individuals. The discussions in the last two rounds of the qualitative study were more narrowly focused

 20

on the specific dimensions of the balancing strategies identified in the initial round. Our notes from the

three rounds of discussions form the basis of our qualitative analysis and inference.

 We began coding the interview transcripts using in vivo codes using the lexicon of terms

discussed by the respondents. As we coded the data, we looked for emergent themes, visualizing the

relationship between different parts of the data and established theoretical ideas in the literature. The main

theoretical concepts that guided our analysis, comparison, and inference were related to the tradeoff

shifting mechanisms reported in prior organizational ambidexterity literature (e.g., Adler et al. 1999;

Gibson and Birkinshaw 2004) and the emerging body of literature on controls in agile and flexible

software development (Boehm and Turner 2003b; Harris et al. 2009, Maruping et al. 2009, Vidgen and

Wang 2009). As we progressed through the iterative analysis, we added additional code labels to the

transcript passages representing appropriate theoretical constructs that we identified in the ambidexterity

and software process literature. Coding reliability was mainly established through two stages of review by

an independent academic researcher and a practitioner expert with more than fifteen years of software

project management experience. Together, the independent reviewers covered more than 80% of the

qualitative data and after resolving a few minor discrepancies, achieved a high level of congruence in

accepting our final coding scheme. The inter-rater reliability as measured by Cohen‘s Kappa was 0.9. We

report our findings from the qualitative study in the next section.

5.1. Qualitative Study Results

 First, we observed that the balancing tactics employed by project teams spanned multiple

dimensions including individuals, teams, software artifacts, and cross-functional processes lending

support to prior research propositions that flexible process designs need to be viewed as a multifaceted

and multilevel concept spanning people-, technology-, and environment-related factors (Boehm and

Turner 2003b; Sarker and Sarker 2009). Further, early in our discussions with the participants, we

discovered that the teams often associated their balancing tactics with anticipated or observed changes in

their operating environment. In other words, the trigger for a rebalancing act that altered the composition

of plan-based or agile elements in a project‘s process design was often attributed to ‗proaction‘ in advance

of change, ‗reaction‘ to change, or ‗learning‘ from change – the primary dimensions identified in the ISD

literature to assess process design agility (c.f., Conboy 2009). In the later rounds of our discussions, we

utilized this taxonomy to garner specific examples of balancing plan-based and agile aspects in process

designs. Overall, the balancing tactics we uncovered can be organized along four key dimensions:

tradeoff shifting mechanisms, client relationships, artifact specification, and project governance. The

specific balancing tactics we uncovered along these dimensions, the corresponding literature references,

and the dominant plan-based and agile components of the tactics are summarized in Table 8.

 21

Tradeoff Shifting Mechanisms

Meta-Routines: Discussion participants emphasized that a key enabler of software process ambidexterity

in their projects was the extensive use of detailed and standardized process templates, which enabled

software development meta-routines regardless of whether the teams used specific plan-based or agile

process components in their methods. Meta-routines enabled by the process maps systematize problem-

solving procedures (c.f., Adler et al. 1999) providing a common organization-wide platform for

accommodating changes (Feldman and Pentland 2003). Process maps helped the project teams to be

flexible with the specific implementation approach of KPAs of diverse process methods, and

simultaneously facilitated independent audit and verification by authorities outside the project team such

as the organizational SEPG and external auditors. Moreover, the operational infrastructure for using and

reporting process templates and tailoring project-level process designs was fully automated, thus avoiding

unnecessary resource overheads for manual reporting and documentation, facilitating lean and well-

controlled meta-routines.

Partitioning: Project teams followed context-specific partitioning mechanisms for bounding the scope of

plan-based and agile components of their processes. Spatial partitioning of sub-units and temporal

partitioning of tasks within a unit have been reported to aid ambidexterity in prior literature (Adler et al.

1999; Puranam et al. 2006). We did not find any sub-unit structural partitioning mechanisms at our

research site, but teams followed temporal task partitioning to balance plan-based and agile process needs.

Broadly, when requirements were ambiguous and uncertain, teams started on an agile process footing and

moved on to more plan-based methods at later stages of the project when a stable design had evolved. The

following narrative from a project manager illustrates a temporal partitioning strategy:

―A client power-user worked intensely with us for a month at the start of the project. The focus at

that time was on rapidly figuring out what the end user wanted, what could be done with the

existing systems, and what we could deliver within the schedule. Since no one had answers to all

the questions, we had to progress in rapid cycles. Our design kept changing everyday and

whiteboard pictures captured on our cell phone cameras was the basis of our documentation. But,

once the system design was finalized, we started planning in detail for the rest of the project

duration [6 months]. There was no spiraling after that…‖

Teams that had started their project on a stable and well-planned footing rebalanced their methods to

include more agile components at times of turbulence due to external shocks, as recounted by a team

leader:

―As the project was for a repeat customer, we knew the system well. We made detailed project

plans and design document that were approved by the client team. We used to send our [balanced]

scorecard reports to the client every week as the build progressed. But, at one point of the project

when the client applied a new patch from another platform vendor, an important module stopped

working. Suddenly, nothing seemed to progress. Numbers [on the balanced scored report] looked

 22

so bad that we stopped sending it to the client. We had to suddenly find alternate ways of doing

things. That‘s when we started resorting to problem frames, small releases, continuous integration,

and collective ownership of system environment [with the client]. It turned out that the only plan

we kept was the delivery deadline; everything else changed on a day-to-day basis.‖

While the application of specific partition mechanisms varied across the project contexts, what

was common among the projects was the use of scope and temporal boundaries for bounding the

application of plan-based and agile process components. Although the teams frequently switched between

the boundaries of plan-based and agile process components depending on their context, the common

platform of process maps, which connected the context-specific process elements to meta-routines,

facilitated task-level accounting and traceability of expenditure. The teams handled potential impediments

to learning due to the partitioning of plan-based and agile process boundaries and frequent switching

between them through a combination of formal and ‗on-the-job‘ training through peer mentors. Learning

from each other through peer-reviews and pair programming was the most common informal mechanisms

that came up in our discussions. Formal training was handled through an organization-wide education unit

that conducted both in-class room and online courses on a variety of project management, quality

management, and technical topics.

Client Relationship

Relational capital with clients played an important role in how the project teams balanced plan-based and

agile components in the process design. Teams followed user-centered design principles and standards

(ISO9241-210, 2010) and had personnel in multiple roles interact with end users and client managers.

However, project teams often encountered significant variation in client involvement during the course of

a project lifecycle, and the extent of client involvement during specific stages of the project lifecycle

determined if collective ownership to issues could be forged or if relationships centered on more formal

contractual norms such as service level agreements (SLAs). The following quote from a software

engineer captures the logic of balancing agile and plan-based process components in day-to-day work

using the client relationship axis:

―I have to work with different departments of a client. Some [end-users] require detailed

documentation and cost justification for everything, others are more trusting and approve changes

over a phone call, and a few won‘t even open documents or read emails [that I send them]. You

can‘t expect all end-users to know what is permitted and what is not permitted according to the

project contract, and you can‘t throw around contract terms to end users who are normally

helpful…‖

 23

Table 8. Control and Flexibility Balancing Mechanisms

Balancing Dimension

Sample Literature

Reference

Balancing Tactic
Discipline and Control

Component

Flexibility and Improvisation

component

Tradeoff Shifting Mechanisms

Meta-routines

Adler et al. (1999); Gibson

and Birkinshaw (2004); Raish

and Birkinshaw (2008);

Puranam et al. (2006).

Use of standardized process

mapping template.

Standard mapping of templates

facilitate independent auditing

and traceability.

Malleability of process components

depending on project context.

Partitioning

Separation of process component

based on software lifecycle stage

and context.

Boundary of non-routine and

experimentation activities well

defined.

 Autonomy of improvisation without

detailed approvals within the defined

task boundaries.

Switching
Swapping process methods across

iterations, and lifecycle stages.

Activity and task-level

accounting of resource

allocation.

 Flexibility in iteration lengths

(sprints) and planning games.

Enrichment

Process-based learning and

frequent on-the-job peer-level

training.

Tracking of individual team

member-level skill set and

capabilities.

 Highly capable and cohesive pair-

programming teams.

Client Involvement and

Relationship

Gronbaek et al. (1993);

Leonard and Rayport (1997)

Follow empathic and participatory,

user-centered design principles.

Bounded targets for Service

Level Agreements (SLA) and

traceability of performance.

Frequent involvement of end-users

and collective decision-making.

Artifact Specification

Requirements

Gomaa and Scott (1981);

Davis et al. 1997); Morgan

(2006, pp.110-11)

―Living requirements‖ with

iterative prototyping.

Clear and sufficient

documentation for reference.

Constant review of end-user

requirements and tacit specifications.

Design
 Model-driven and aspect-oriented

specifications.

Scope boundaries of functional

and non-functional

requirements well defined.

Collective ownership of design (i.e.,

responsibility of all programmers) and

constant refactoring possible without

jeopardizing customer needs.

Project Governance

Measurement and

Performance Management

Fenton and Pfleeger (1998);

Gopal et al. (2002, 2005)

 Common platform and uniform

and standardized procedures for

metrics collection across process

designs.

Statistical quality control and

independence of SEPG and

production teams ensured.

Flexibility of metrics design; simple,

unobtrusive collection of metrics.

Controls

Kirsch (1997); Harris et al.

(2009); Maruping et al.

(2009)

 Emergent Outcome Controls.

Objective, data-based

comparison of outcomes and

plans that are traceable to tasks.

 Frequently evolving and continuous

targets for project outcomes.

Volatility and Change

Management

Barry et al. (2006); Vidgen

and Wang (2009)

Change requests part of ―living

requirements‖ and negotiations

bounded by the specifications and

SLA targets.

Changes logged and recorded

for independent analysis.

Simplified negotiations for changes

enhance efficiency of empathic design

and frequent end user-involvement.

Critical Incident

Management
Keil (1995)

Joint escalations (client-vendor) to

upper management.

Active involvement and

verification by senior

management.

 Collective ownership of problems

between end-users and programmers.

 24

Artifact Specification

Documenting specifications that establish the common ground for different stakeholders in a software

development project including end-users, programmers, architects, testers, and project managers needs to

accommodate multiple viewpoints and is often resource intensive (Davis et al. 1997). Teams balanced the

plan-based process requirement for reliable and comprehensive documentation with the agile process

emphasis on working software by adopting mechanisms that facilitated ―minimum critical specifications‖

(c.f., Morgan 2006, pp. 110-111). Some of the mechanisms that came up in our discussions included

model-driven and aspect-oriented specifications, and iterative prototyping. Utilizing these specification

tools and mechanisms in lieu of comprehensive natural language documents, teams were able to

adequately create a common project reference source and also facilitate responsive action through

continuous refinement, refactoring, and functionality change without bureaucratic negotiations.

Project Governance

As mentioned earlier, the teams were able to leverage process maps to implement task-level accounting of

expenditures and extensive traceability mechanisms required by the organizational metrics program

prevalent at the research site. As reported in prior research (Gopal 2002; 2005), the metrics program

formed the basis of a rigorous performance measurement regime that helped institute relevant project

controls in the projects. With a disciplined and structured approach enforced by the metrics program,

process maps helped establish flexibility at the project level, and facilitated teams pursuing ambidextrous

process designs to institute metrics that were relevant and meaningful to the project context. Project

tracking and reporting were tailored for the partitioning mechanisms used by the teams and were used by

the SEPG to derive organization-wide benchmarks for comparison and statistical quality control

mechanisms. Thus, a rebalancing act between plan-based and agile components of the project-level

process design did not disrupt functioning of project governance mechanisms. A project manager‘s

comment illustrates the above result:

―Metrics collection is not a separate effort for us. It is part of the process. The only question was

whether metrics can live our written vs. verbal lifestyle as we switch from waterfall to sprints

[SCRUM iteration]. We know [that] we don‘t want it to be your word versus my word in our

client meetings, planning meetings, or in our sprint standup meetings. Reportable metrics that map

to the client needs is thus very important. We only collect what we think are useful for our

meetings, and we report what we use.‖

Similar to the findings reported by Harris et al. (2009), we noticed that the teams pursuing

ambidextrous process designs used data from the metrics program to institute effective emergent outcome

controls. The portfolio of emergent outcome controls included scope boundaries and iterative feedback

mechanisms such as temporal partitioning of problem frames and minimum critical specifications that

kept spiraling towards final deliverable working software. The rigorous measurement and performance

 25

management mechanisms along with a portfolio of emergent outcome controls provided the necessary

infrastructure for the teams and external stakeholders for data-driven decision-making on changes and

critical incidents, and helped forge an environment of collective ownership. Changes were logged and

monitored for independent analysis by both the internal and external stakeholders, and when necessary,

they were used for bounding the limits of service level agreements. Committees involving members at the

same functional level from the development and client teams handled critical incidents, facilitating joint-

escalation schemes, which reduced reporting bias and coordination impediments (Keil 1995). The

following comments from a team leader provides a narrative illustration:

―When we started using XP with SCRUM for CMMI Level-5 KPAs, the real tension points were

the reports for [our] account and delivery managers. Account managers and delivery managers

want reports because they make decisions when things go bad — when we miss a delivery or

when [customer satisfaction] rating is low. But, they don‘t have time for daily standup meeting

reports and verbal satisfaction scores are not good enough. [Client] users have the same problem

too. They have their managers to report to. So, we came up with a simple checklist that we jointly

fill in our planning and standup meetings. The checklist is collated by quality assurance for

account and delivery managers. When there are problems we go to managers to negotiate as one

team…‖

 In summary, teams that pursued ambidextrous process design at the research site were able to

achieve the discipline and control requirements of plan-based processes and the flexibility and

improvisation focus of agile processes using several balancing tactics. Teams overcame typical

impediments to ambidextrous designs by leveraging peer-learning, relational capital, emerging

specification techniques and project governance modes that forged collective ownership and data-driven

decision making.

6. Discussion

To shed an alternative perspective on the ongoing debate between plan-based and agile software

processes, we examined the notion of software process ambidexterity and assessed the value of

ambidextrous software process designs. The results from our analysis establish the significant and

positive causal linkage between software process ambidexterity and a variety of project performance

measures. Based on the empirical results from detailed project-level data and our qualitative observations,

we now proceed to discuss managerial implications, especially the different steps that are needed in a

pathway towards achieving software process ambidexterity in firms.

6.1. Pathway to Software Process Ambidexterity

The nested cycles of the needs of SEPG and project personnel that influence the characteristics of

realized software process design is a key source of tension between the different organizational groups

involved in software production. While organizational-level SEPG personnel desire standardization and

control for better predictability, context-specific improvisations and adaptations are desired by project-

 26

level personnel to aid better customer-orientation and cope with environmental volatility (c.f., Austin and

Devin 2009; Barry et al. 2006; Lee et al. 2006). Figure 3 depicts a generalized representation of the

nested cycles of needs, which we uncovered from our analysis of project data and qualitative analysis.

The nested cycles move across the process design continuum with an agile methods emphasis on the one

end and plan-based emphasis on the other. The corresponding coordination and governance mechanism

enforced by the SEPG is thinner (lesser resources spent on monitoring and control) near the agile methods

end of the process design continuum and relatively thicker (more resources spent on monitoring and

control) on the plan-based methods end of the process design continuum. The characteristics of the

projects selected and executed by the firm (i.e., market-driven environmental factors) pull and push the

nested cycles (and the associated tensions) between SEPG and project-level teams across the software

process design continuum axis.

The first necessary step to turn the nested tensions depicted in Figure 3 into a virtuous cycle of

ambidexterity in software firms is to create the appropriate structural and operational support mechanisms

(c.f., Andriopoulos and Lewis 2008). Structural support mechanisms ensure adequate ―separation of

concerns‖ between organizational-level governance personnel and project management personnel, and

provide the necessary autonomy for independent action. Operational support mechanisms provide the

necessary loose-coupling coordination routines between these autonomous units, enabling a common

support region for independent, yet interrelated action. For example, at our research site the SEPG

personnel and project managers were on the same hierarchy, acted independently without bureaucratic

micro-management of each other‘s functioning. The control and experimentation design space of the

SEPG personnel and the project managers respectively were constrained by a forcing common platform

of governance function instituted by the firm‘s cross-functional centralized productivity office, which

directly came under the purview of senior management (CEO‘s office). Such structural and operational

support mechanisms help firms create an environment conducive for software production using

ambidextrous software process designs.

 27

Figure 3. Nested Cycles of Software Process Ambidexterity

The second important step in the pathway to achieve organization-wide adoption of ambidextrous

software process designs is the implementation of a rigorous organization-wide metrics program (e.g.,

Gopal 2002; 2005), which enables detailed observation of the micro-variations induced by ambidexterity

such as the way project teams react to uncertainties and environmental volatility, and their corresponding

performance outcomes. A comparative analysis of the project-level micro-variations across the process

design continuum is facilitated by the organization-wide metrics program through a common

measurement framework, and helps in the continuous refinement of software development meta-routines.

For example, at our research site, irrespective of the process design choice chosen by a project team,

detailed metrics (that were used in this study) were collected and stored in a central database for analysis.

By deducing patterns from these micro-variations, best practices can be identified and institutionalized

across the organization (c.f., Ramasubbu et al. 2008).

The third and final step in the pathway to achieve sustainable process ambidexterity in software

firms is to recognize that not all projects benefit equally by applying ambidextrous process designs for

software production. Our results indicate that the natural propensity of project teams to adopt (or avoid)

ambidextrous software process designs may sometimes run counter to the best practices identified from

studying the project-level metrics data. While a voluntary choice of process designs by project teams

enables experimentation and learning-by-doing, it might also be necessary to curtail known sub-optimal

choices through a combination of educational programs and portfolio of process controls. Advances in

Coordination
and

Governance

Standardization
/ Control

SEPG

Project
Management

SEPG

Stability /
Efficiency

Variation /
Diversity

Uncertainty /
Environmental

Volatility

Plan-based emphasis

Agile methods emphasis

Project
Management

Low requirements volatility
Low end user participation
Large teams
Older technology

High requirements volatility
High end user participation
Smaller teams
New technology

 28

implementing effective process traceability mechanisms and integrating knowledge management

practices with the regular activities of a software development lifecycle (e.g., Ramesh 2002; Rus and

Lindvall 2002) pave way for mechanisms that could curtail sub-optimal choices in software organizations

that deploy ambidextrous process designs.

6.2. Limitations and Future Research

There are several limitations of this study that future research could address. First, since we

observed only custom (bespoke) software development projects, we should be cautious in generalizing

our results across all software development projects (maintenance, reengineering, product development,

etc). The research methodology and the potential outcomes empirical analysis utilized in this study can be

replicated in other software development settings and future research could embark on such replication

and comparative analysis. Second, we did not observe the long-term impacts of ambidextrous process

design and only studied the impact on immediate project performance outcomes. Future research could

examine the long-term impacts of software process ambidexterity on learning curves and capability

development of project teams. Third, our empirical context was limited to the examination of process

evolution from a standardized plan-based starting point to an ambidextrous process design. Other

variations of the process design evolution (for example movement from agile processes to ambidextrous

process) need to be investigated and results compared with our findings. Finally, the distinct coexistence

of several process designs in a software production ecosystem and the way these diverse process designs

can be mapped to each other, controlled, and governed warrants further examination. We believe that

these are fruitful lines of enquiry for future research on software process ambidexterity.

7. Conclusion

Reconciling the opposing approaches of plan-based and agile software process designs, we

advanced the notion of software process ambidexterity and examined the antecedents and consequences

of process designs that promote flexibility and improvisation without compromising discipline and

control. The large-sample empirical results reported in the study establish the value of ambidextrous

process designs. Our in-depth qualitative analysis of the balancing tactics employed by projects pursuing

ambidextrous process designs shows that the common impediments to tradeoff shifting mechanisms can

be overcome when ambidextrous rebalancing of plan-based and agile process components is hinged on

client relationships, project governance, and efficient artifact specifications. We believe that this study

lays a good foundation to ―move beyond the entrenched disagreements about planning versus agility‖

(Austin and Devin 2009) and establishes a rigorous case for usefully combining the disparate control and

flexibility-focused components of software development methodologies to create a new generation of

process innovations in the hypercompetitive software industry.

 29

References

Adler, P.S., Goldoftas, B., and Levine, D. I. 1999. ―Flexibility versus Efficiency: A case study of model

changeovers in the Toyota production system,‖ Organization Science (10:1), pp. 43-68.

Aaen, I. 2003. ―Software Process Improvement: Blueprint versus Recipes,‖ IEEE Software (20:5), pp.

86-93.

Andriopoulos, C. and Lewis, M. W. 2008. ―Exploitation-Exploration Tensions and Organizational

Ambidexterity: Managing Paradoxes of Innovation,‖ Organization Science (20:4), pp. 696-717.

Austin, R. D., and Devin, L. 2009. ―Weighing the Benefits and Costs of Flexibility in Making Software:

Towards a Contingency Theory of The Determinants of Development Process Design,‖ Information

Systems Research (20:3), pp. 462-477.

Barry, E., Kemerer, C. F., and Slaughter, S. A. ―Environmental Volatity, Development Decisions, and

Software Volatility: A Longitudinal Analysis,‖ Management Science (52:3), pp. 448-464.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunnigham, W., Fowler, M., Grenning, J, et al.

2001. ―Manifesto for Agile Software Development,‖ Accessed October 16, 2010,

http://agilemanifesto.org/.

Begel, A., and Nagappan, N. 2007. ―Usage and Perceptions of Agile Software Development in an

Industrial Context: An Exploratory Study,‖ in Proceedings of the First International Symposium on

Empirical Software Engineering and Measurement, Madrid, Spain, September 20-21.

Boehm, B. 1988. ―A Spiral Model of Software Development and Enhancement,‖ IEEE Computer (21:5),

pp. 61-72.

Boehm, B. and Turner, R. 2003a. ―Using Risks to Balance Agile and Plan-Driven Methods,‖ IEEE

Software (36:6), pp. 57-66.

Boehm, B., and Turner, R. 2003b. Balancing Agility and Discipline: A Guide for the Perplexed, Boston,

MA: Addison-Wesley Professional.

Boh, W. F., Slaughter, S. A., and Espinosa J. A. 2007. ―Learning from Experience in Software

Development: A Multilevel Analysis,‖ Management Science (53:8), pp. 1315-1331.

Brown, S. L., Eisenhardt, K. M. 1997. ―The Art of Continuous Change: Linking Complexity Theory and

Time-paced Evolution in Relentlessly Shifting Organizations,‖ Administrative Science Quarterly

(42:1), pp. 1-34.

Cataldo, M., and Nambiar, S. 2009. ―On the Relationship Between Process Maturity and Geographic

Distribution: An Empirical Analysis of Their Impact on software Quality,‖ Proceedings of the ACM

SIGSOFT Symposium on The Foundations of Software Engineering, Amsterdam, Netherlands,

August 24-28.

Conboy, K. 2009. ―Agility from First Principles: Reconstructing the Concept of Agility in Information

Systems Development,‖ Information Systems Research (20:3), pp.329-354.

Cox, B. J. 1990. ―Planning the Software Industrial Revolution,‖ IEEE Software (7:6), pp. 25-33.

Cusumano, M. A. 1994. ―The Limits of ―Lean‖,‖ Sloan Management Review (35:4), pp. 27-32.

Davis, A., Jordan, K., and Nakajima, T. 1997. ―Elements Underlying the Specification of Requirements,‖

Annals of Software Engineering (3:1997), pp. 63-100.

Dehejia, R. H., and Wahba, S. 2002. ―Propensity score-matching methods for nonexperimental causal

studies,‖ Review of Economics and Statistics (84:1), pp.151-161.

http://agilemanifesto.org/

 30

Dijkstra, E. 1972, ―The Humble Programmer,‖ ACM Turing Lecture, Dikjstra Archives:

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html, Accessed October 16,

2010.

Duncan, R. 1976. ―The Ambidextrous Organization: Designing Dual Structures for Innovation,‖ in

Killman, R. H., Pondy, L. R., and Sleven, D. (eds.), The Management of Organization (1: 167-188),

New York: North Holland.

Dyba, T., and Dingsoyr, T. 2008. ―Empirical Studies of Agile Software Development: A Systematic

Review,‖ Information and Software Technology (50:9-10), pp. 833-859.

Fenton, N. E., and Pfleeger, S. L. 1998. Software Metrics: A Rigorous and Practical Approach. Boston,

MA: PWS Publishing.

Feldman, M. S., and Pentland, B. T. 2003. ―Reconceptualizing Organizational Routines as a Source of

Flexibility and Change,‖ Administrative Science Quarterly (48:1), pp. 94-118.

Fichman, R. F., and Kemerer, C. F. 1997. ―The Assimilation of Software Process Innovations: An

Organizational Learning Perspective,‖ Management Science (43:10), pp.1345-1363.

Galliers, R. D., and Swan, J. A. 1997. ―Against Structured Approaches: Information Requirements

Analysis as Socially Mediated Process,‖ Proceedings of the 13
th
 Hawaii International Conference on

System Science, Wailea, HI, January 7-10.

Gibson, C. B., and Birkinshaw, J. 2004. ―The Antecedents, Consequences and Mediating Role of

Organizational Ambidexterity,‖ Academy of Management Journal (47:2), pp. 209-226.

Gomaa, H., and Scott, D. 1981. ―Prototyping as a Tool in the Specification of User Requirements,‖

Proceedings of the 5
th
 International Conference on Software Engineering, San Diego, CA.

Gopal, A., Krishnan, M .S., Mukhopadhyay, T., and Goldenson, D. R. 2002. ―Measurement Programs in

Software Development: Determinants of Success,‖ IEEE Transactions on Software Engineering

(28:9), pp. 863-875.

Gopal, A., Mukhopadhyay, T., and Krishnan, M .S. 2005. ―The Impact of Institutional Forces on

Software Metrics Program,‖ IEEE Transactions on Software Engineering (31:8), pp. 679-694.

Gronbaek, K., Grudin, J., Bodker, S., Bannon, L. 1993. ―Achieving Cooperative System Design: Shifting

from a Product to a Process Focus,‖ Participatory Design: Principles and Practices, eds. Schuler,

D., and Namioka, A., Hillsdale, NJ: L. Erlbaum Associates Inc.

Hall, A.D. 1962. A Methodology for Systems Engineering, Reinhold: Van Nostrand.

Harris, M. L., Collins, R. W., and Hevner, A. R. 2009. ―Control of Flexible Software Development Under

Uncertainty,‖ Information Systems Research (20:3), pp. 400-419.

Harter, D., Krishnan, M. S., and Slaughter, S. A. 2000. ―Effects of Process Maturity on Quality,

Cycletime, and Effort in Software Product Development,‖ Management Science (46:4), pp. 451-466.

Harter, D., and Slaughter, S. A. 2003. ―Quality Improvement and Infrastructure Activity Costs in

Software Development: A Longitudinal Analysis,‖ Management Science (49:6), pp. 784-800.

Hendricks, K. B., and Singhal, V. R. 1997. ―Does Implementation of an Effective TQM Program Actually

Improve Operating Performance? Empirical Evidence from Firms That Have Won Quality Awards,‖

Management Science (43:9), pp. 1258-1274.

Highsmith, J. 2002. Agile Software Development Ecosystems. Boston, MA: Addison-Wesley Longman

Publishing Co Inc.

Humphrey, W. S. 1989. Managing the Software Process. Reading, MA: Addison-Wesley

http://www.cs.utexas.edu/~EWD/transcriptions/EWD03xx/EWD340.html

 31

IEEE SPA. 2010. IEEE Computer Society Software Process Achievement Award,

http://www.computer.org/portal/web/awards/processachievement, Accessed 17 October, 2010.

ISO9241-210. 2010. ―Ergonomics of Human-System Interaction: Human-centered Design for Interactive

Systems,‖ International Organization for Standardization.

Keil, M. 1995. ―Pulling the Plug: Software Project Management and the Problem of Project Escalation,‖

MIS Quarterly (19:4), pp. 421-447.

Kirsch, L. S. 1997. ―Portfolios of Control Modes and IS Project Management,‖ Information Systems

Research (8:3), pp. 215-239.

Krishnan, M. S., and Kellner, M. I. 1999. ―Measuring Process Consistency: Implications for Reducing

Software Defects,‖ IEEE Transactions on Software Engineering (25:6), pp. 800-815.

Krishnan, M. S., Kriebel., C. H., Kekre, S., and Mukhopadhyay, T. 2000. ―An Empirical Analysis of

Productivity and Quality in Software Products,‖ Management Science (46:6), pp. 745-759.

Lee, C-H., Venkatraman, N., Tanriverdi, H., Iyer, B. 2010. ―Complementarity-based Hypercompetition in

the Software Industry: Theory and Empirical Test, 1990-2002,‖ Strategic Management Journal

(31:13), pp.1431-1456.

Lee, G., Delone, W., Espinosa, A. J. 2006. ―Ambidextrous coping strategies in globally distributed

software development projects,‖ Communications of the ACM (49:10), pp. 35-40.

Lee, G., DeLone, W. H., and Espinosa, A. J. 2007. ―Ambidexterity and Global IS Project Success: A

Theoretical Model,‖ Proceedings of the 40
th
 Annual Hawaii International Conference on System

Sciences, Big Island, Hawaii, U.S.A., January 03-06.

Lee, G., Espinosa, A. J., and DeLone, W. H. 2009. ―The Effect of Process Ambidexterity on the Success

of Distributed Information Systems Development,‖ Proceedings of the Academy of Management,

Chicago, IL., U.S.A, August 07-11.

Leonard, D., and Rayport, J. F. 1997. ―Spark Innovation Through Empathic Design,‖ Harvard Business

Review (75:6), pp. 102-113.

Maruping, L. M., Venkatesh, V., Agarwal, R., ―A Control Theory Perspective on Agile Methodology Use

and Changing User Requirements,‖ Information Systems Research (20:3), pp. 377-399.

Mithas, S., and Krishnan, M.S. 2009. ―From Association to Causation Via a Potential Outcomes

Approach,‖ Information Systems Research (20:2), pp. 295-313.

Morgan, G. Images of Organization.Thousand Oaks, CA: SAGE Publications Inc.

Nerur, S., Mahapatra, R., Mangalaraj, G. 2005. ―Challenges of Migrating to Agile Methodologies,‖

Communications of the ACM (48:5), pp. 73-78.

O‘Reilly, C. A., and Tushman, M. L. 2004. ―The Ambidextrous Organization,‖ Harvard Business Review

(82:4), pp. 74-81.

Parnas, D. 2006. ―Agile Methods and GSD: The Wrong Solution to An Old but Real Problem,‖ in

Agerfalk, P. J., and Fitzgerald, B (eds.), Flexible and Distributed Software Processes: Old Petunias

in New Bowls, Communications of the ACM (49:10), pp. 27-34.

Paulk, M. C. 2001. ―Extreme Programming from a CMM Perspective,‖ IEEE Software (18:6), pp. 19-26.

Paulk, M. C., Curtis, B., Chrissis, M. B., Weber, C. V. 1993. ―Capability Maturity Model, version 1.1,‖

IEEE Software (10:4), pp. 18-27.

Puranam, P., Singh, H., Zollo, M. ―Organizing for Innovation: Managing the Coordination-Autonomy

Dilemma in Technology Acquisitions,‖ Academy of Management Journal (49:2), pp. 263-280.

http://www.computer.org/portal/web/awards/processachievement

 32

Raisch, S., and Birkinshaw, J. 2008. ―Organizational Ambidexterity: Antecedents, Outcomes, and

Moderators,‖ Journal of Management (34:3), pp. 375-409.

Raisch, S., Birkinshaw, J., Probst, G., Tushman, M. L. 2009. ―Organizational Ambidexterity: Balancing

Exploitation and Exploration for Sustained Performance,‖ Organization Science (20:4), pp. 685-695.

Ramesh, B. 2002. ―Process Knowledge Management with Traceability,‖ IEEE Software (19:3), pp. 50-52.

Ramasubbu, N., Mithas, S., Krishnan, M. S., and Kemerer, C. F. 2008. ―Work Dispersion, Process-Based

Learning, and Offshore Software Development Performance,‖ MIS Quarterly (32:2), pp. 437-458.

Rosenbaum, P.R., and Rubin, D. B. 1983. ―The Central Role of the Propensity Score in Observational

Studies for Causal Effects,‖ Biometrika (70:1), pp. 41-55.

Rosenbaum, P.R. 1984. ―From Association to Causation in Observational Studies: The Role of Strongly

Ignorable Treatment Assignment,‖ Journal of the American Statistical Association (79:385), pp. 41-

48.

Rubin, D. B. 2005. ―Causal Inference Using Potential Outcomes: Design, Modeling, Decisions,‖ Journal

of American Statistical Association (100:469), pp. 322-331.

Rus, I., and Lindvall, M. 2002. ―Knowledge Management in Software Engineering,‖ IEEE Software

(19:3), pp. 26-38.

SEI-PARS. 2010. ―Software Engineering Institute – Published Appraisal Results,‖

http://sas.sei.cmu.edu/pars/pars.aspx and

http://www.sei.cmu.edu/cmmi/casestudies/profiles/pdfs/upload/2010SepCMMI.pdf , Accessed 16,

October 2010.

Schmalensee, R. 2000. ―Antitrust Issues in Schumpeterian Industries,‖ American Economic Review

(90:2), pp. 192-196.

Slaughter, S. A., Levine, L., Balasubramaniam, R., Pries-Heje, J., and Baskerville, R. 2006. ―Aligning

Software Processes with Strategy,‖ MIS Quarterly (30:4), pp. 891-918.

Succi, G. 2010. ―Agile Methods: Between Categorical Imperatives and Lean Production,‖ in Agerfalk, P.

J., and Fitzgerald, B (eds.), Flexible and Distributed Software Processes: Old Petunias in New

Bowls, Communications of the ACM (49:10), pp. 27-34.

Turk, D., France, R., and Rumpe, B. 2002. ―Limitations of Agile Processes‖, Proceedings of the Third

International Confernce on eXtreme Programming and Agile Processes in Software Engineering,

Alghero, Italy, May 26-29.

Vinekar, V., Slinkman, C. W., and Nerur, S. 2006. ―Can Agile and Traditional Systems Development

Approaches Coexist? An Ambidextrous View,‖ Information Systems Management (23:3), pp. 31-42.

http://sas.sei.cmu.edu/pars/pars.aspx
http://www.sei.cmu.edu/cmmi/casestudies/profiles/pdfs/upload/2010SepCMMI.pdf

