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Does Software Process Ambidexterity Lead To Better Software Project Performance? 

Abstract 

Plan-based and agile software development processes seem diametrically opposed in their 

approaches, with the former emphasizing discipline and control and the latter promoting flexibility and 

improvisation. Similar tensions in organizational contexts where efficiency versus flexibility 

considerations simultaneously jostle for management attention has led to the recognition that 

ambidexterity or the ability to manage seemingly conflicting demands is an important precursor to 

organizational success. In this study, we extend the idea of ambidexterity to software development 

processes and empirically examine the performance implications of the ability of software project teams 

to pursue process designs that simultaneously facilitate both control and flexibility. Utilizing data from a 

quasi-experiment involving 424 large commercial software projects of a multinational software services 

firm, we employ a potential outcomes empirical methodology to examine the causal linkage between 

software process ambidexterity and project performance. Our results show that projects that encountered 

frequent requirement changes, larger and complex code-bases, new technologies, higher levels of end-

user engagements, and smaller, inexperienced teams tend to choose ambidextrous software process 

designs over a pure plan-based approach. We find that ambidextrous process design positively contributes 

to better project performance, including on the average about 9% higher productivity, 50% reduction in 

delivered defects, 12% reduction in internal defects, and 3% improvement in overall profitability. 

Complementing the archival data analysis with an in-depth qualitative study of the projects pursuing 

ambidextrous process designs, we enumerate the different mechanisms employed by the project teams to 

balance control requirements with needs for realizing flexibility. We discuss the implications of our 

results and elucidate potential pathways to achieve and sustain ambidextrous process designs in software 

firms. 

 

Key Words: Ambidexterity, Software Process, Software Engineering, Agile Processes, Control, 

Flexibility, Quality Assurance  
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Does Software Process Ambidexterity Lead To Better Software Project Performance? 

1. Introduction 

 Even as software systems have become indispensable to almost every aspect of a firm‘s value 

chain, developing high quality and cost effective software continues to remain a major challenge for the 

software industry.  The software industry has been described as a hypercompetitive industry (Lee et al. 

2010) marked by high velocity innovation (Brown and Eisenhardt 1997) and technological change 

(Schmalensee 2000) where process innovations have been key to success.   Tracing the history of 

software process innovations, Austin and Devin (2009), recount how the industry evolved from ad hoc 

software development (Dijkstra 1972) to plan-based approaches that called for an emphasis on planning 

to anticipate changing conditions and a focus on standards that reduced idiosyncratic interdependence 

across the different stages of the software development process (Boehm 1988; Cox 1990).  

 Plan-based approaches to software development have led to improvements in development 

productivity, quality and maintainability of the developed software (c.f., Harter et al. 2000, 2003; 

Ramasubbu et al. 2008); yet they have been criticized for promoting inflexibility, or the inability to 

respond effectively to rapidly changing user requirements especially in more turbulent environments (e.g., 

Aaen 2003; Highsmith 2002; Maruping et al. 2009).  Critics of plan-based approaches contend that 

software development approaches have to remain flexible enough to be able to revisit specifications and 

refine requirements even in the late stages of development, especially in dynamic environments (Austin 

and Devin 2009; Harris et al. 2009). An alternate process paradigm described as agile software 

development has emerged as a response to these concerns and emphasizes iterative processes and frequent 

re-planning designed to adjust to unanticipated changes and new requirements (c.f., Beck et al. 2001; 

Boehm and Turner 2003b; Nerur and Balijepally 2007).  

Although plan-based and agile approaches seem diametrically opposed in their approach to the 

design and development of software, with the former emphasizing discipline and control and the latter 

promoting flexibility and improvisation, recent academic research has focused on reconciling the 

differences and examining the factors involved in choosing an appropriate software process. A key insight 

that has emerged from research on these two approaches stresses the environmental contingencies that 

determine the relative efficacies of plan-based versus agile approaches (Boehm and Turner 2003b; Austin 

and Devin 2009).  Empirical research that has examined how firms choose between these two approaches 

show that software  processes that are aligned with business strategies produce better outcomes, such as 

when firms pursuing differentiation strategies choose agile approaches to software development 

(Slaughter et al. 2006). 
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While it is important to distinguish the choices and outcomes of plan-based versus agile process 

designs, a more nuanced approach calls for empirical research into ways of usefully combining plan-

based and agile techniques (Austin and Devin 2009; Harris et al. 2009).  Similar tensions in other 

organizational contexts where efficiency versus flexibility considerations simultaneously jostle for 

management attention has led to the recognition that ambidexterity or the ability to manage seemingly 

conflicting demands is an important precursor to organizational success (e.g., Adler et al. 1999; Gibson 

and Birkinshaw 2004; Raisch and Birkinshaw 2008).  The idea of ambidexterity in organizations 

recognizes that demands in task environments are always to some degree in conflict and so there are 

always trade-offs to be made. Although these trade-offs can never entirely be eliminated, successful 

organizations reconcile them to a large degree, and in doing so enhance their long-term competitiveness 

(Adler et al. 1999; Raisch et al. 2009).   

In this study, we extend the idea of ambidexterity to software development processes and 

empirically examine its impact on software project performance. We define software process 

ambidexterity as the ability of a software development project team to pursue process designs that 

simultaneously facilitate both control and flexibility. Understanding the drivers and consequences of 

software process ambidexterity is an important step towards uncovering mechanisms that shift the key 

tradeoffs observed in software development such as flexibility versus  efficiency (Harris et al. 2009), 

productivity versus quality (Krishnan et al. 2000; MacCormack et al. 2003), and development versus 

maintenance performance (Banker et al. 1998), which tend to lockdown software firms in vicious cycles 

of sub-optimal performance.  

While the logic of software process ambidexterity has its roots in prior conceptual work bridging 

the views of plan-based and agile methods (e.g., Paulk 2001; Boehm and Turner 2003a, 2003b; Lee et al. 

2006, 2007; Vinekar et al. 2006), much of the analysis has relied on anecdotal or limited sample case-

based evidence, and rigorous large-sample empirical investigation of software process ambidexterity has 

been scarce. The aim of this study is to fill this critical gap.  We examined a large scale field quasi-

experiment on software processes at a leading multinational software services company involving 424 

commercial software projects, and used a potential outcomes research methodology (c.f., Rosenbaum and 

Rubin 1983; Mithas and Krishnan 2009) to analyze the observational data for answering the research 

question: does software process ambidexterity lead to better software project performance? 

Subsequently, we complemented the archival data analysis with an in-depth qualitative study of the 

projects that pursued ambidextrous software process designs to enumerate the different balancing tactics 

employed by the teams. 
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The remainder of the paper is structured as follows: In the next section, we provide the 

background literature on plan-based and agile software process designs and discuss the antecedents of 

software process ambidexterity. In section 3, we report the quasi-experiment at our research site and our 

data collection procedure. In section 4, we present our potential outcomes data analysis and results. Then, 

in section 5, we enumerate our findings from a qualitative study of the project teams following 

ambidextrous process designs with a focus on uncovering and inferring the balancing tactics used by the 

teams. We discuss insights from the results in section 6 and draw implications for an actionable pathway 

to achieving software process ambidexterity along with acknowledging the limitations of the study and 

highlighting avenues for future research. 

2. Software Process Ambidexterity 

We begin with an overview of plan-based and agile software development process designs 

highlighting the underlying characteristics and the tradeoff challenges that these process designs impose 

on software development teams. Then, drawing on the organizational ambidexterity literature, we show 

how these two approaches may be reconciled through ambidextrous software process design and discuss 

the antecedents of ambidextrous process design. 

2.1. Plan-based Software Processes 

  Grounded in principles of systems engineering and total quality management, a plan-based 

approach to software development emphasizes structured processes throughout the development 

lifecycle. Detailed plans for the requirements analysis, software design, development, and testing phases 

are drawn out, and as a project progresses in the development lifecycle adherence to the plans is 

monitored and documented. Through detailed documentation, plan-based software processes enforce 

traceability and control of different activities of the project members, inherently disciplining them. 

Moreover, detailed project metrics are collected at different stages of the project and used for planning 

and statistical quality control procedures (c.f., Gopal et al. 2002; 2005). 

The Capability Maturity Model (CMM) (Paulk et al. 1993) is a popular and influential software 

process framework that embodies a typical plan-based process design. The framework was designed to 

aid firms to improve their software process maturity in planned evolutionary stages (from an ad hoc level-

1 to optimized level-5). In a plan-based process improvement paradigm, such as the one advocated by the 

CMM framework, adherence to the prescribed software processes is periodically audited and assessed by 

internal and external auditors. To be successfully assessed at a certain capability level, it is typically 

mandated that a project team need to consistently practice at least 90% of the Key Process Areas (KPAs) 

pertaining to the chosen capability level, which is governed by the detailed specifications of the plan-
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based process framework (e.g., CMM) adopted by the project. Thus, a plan-based software process design 

enforces a metric-driven and disciplined approach to measure, control, and continuously improve 

software practices, enabling organization-wide standardization of processes, improving predictability, and 

reducing uncertainties through improved planning – important tenets of systems engineering (Hall 1962) 

and total quality management (Hendricks and Singhal 1997).  

Plan-based software processes have been widely adopted by software firms worldwide, and there 

is a continued growth and refinement of the commercially available prescriptive plan-based process 

frameworks (SEI-PARS 2010).  Research shows that adoption of the key processes embodied in the 

CMM family of process frameworks is associated with positive performance outcomes in co-located (e.g., 

Krishnan and Kellner 1999; Harter et al. 2000; Harter et al. 2003) as well as in distributed software 

development (e.g., Ramasubbu et al. 2008; Cataldo and Nambiar 2009).   

Despite the many advantages, plan-based processes have been implicated for their inflexibility 

and for giving little room for reflection and improvisation (Aaen 2003; Galliers and Swan 1997; Boehm 

and Turner 2003b).  Aaen (2003) argues that plan-based software process designs have serious 

shortcomings including those of ―substituting technological contact for human interface, gold-plating 

processes at the expense of knowledge flow, restricting reflective dialogue between participants and 

leaving no room for experimentation and improvisation‖ (pp.88). Also, since a plan-based process design 

attempts to standardize organizational processes, it tends to propagate a blueprint approach to software 

development, which externalizes process knowledge by formalizing it outside the process user‘s thought 

process, and thereby creating artificial structures far removed from actual developers‘ culture, eventually 

stymieing improvisation and experimentation (Aaen 2003). These limitations of plan-based process 

designs hinder a software firm‘s capability to improvise responses to changing customer needs (due to 

changes in project requirements, budgets, schedules, etc) and market conditions – essentially losing out 

on the flexibility dimension of the flexibility-efficiency tradeoff dynamics observed in software 

development projects (Harris et al. 2009). 

2.2. Agile Software Processes 

 Agile software processes emerged as a response to the persistent problem of inflexibility inherent 

in the plan-based approach to software development. Conboy (2009), offering a robust definition of agile 

software process, notes that agile processes facilitate ―the continual readiness of an ISD [Information 

Systems Development] method to rapidly or inherently create change, proactively or reactively embrace 

change, and learn from change while contributing to perceived customer value (economy, quality, and 

simplicity)…‖ (pp. 340). Despite considerable variation in the agility characterizations among the many 

commercially available agile software process frameworks (c.f., Boehm and Turner 2003b; Conboy 
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2009), there is a strong commonality in their adherence to iterative software production and the lean 

manufacturing principle of ―elimination of waste‖ (Succi 2006).  

Through a lean production approach, agile software process designs focus on ―individuals and 

interactions over processes and tools; working software over comprehensive documentation; customer 

collaboration over contract negotiation; responding to change over following a plan‖ (Beck et al. 2001). 

Similar to lean manufacturing (Cusumano 1994), the agile software process design allows independent 

programmers led by trustworthy project managers to respond to changing customer needs by making 

rapid and quick changes to any aspect of a software project without facing the bureaucratic hurdles of 

approvals and detailed justifications that are typical of plan-based software processes. In contrast to plan-

based software processes, agile processes encourage social inquiry and collective action, focusing on 

improvisation and rapid adaptations to respond to changes. Agile software processes tend to align more 

towards the flexibility dimension in the flexibility-efficiency tradeoff dynamics seen in software 

development (Harris et al. 2009). For example, a large-scale study at Microsoft reported design flexibility 

and the ability to quickly respond to requirements changes as one of the top benefits realized due to the 

adoption of agile software processes (Begel and Nagappan 2007).  Dyba and Dingsoyr (2008) summarize 

the findings of more than thirty empirical studies that reported positive impacts of agile software process 

design on a variety of performance outcomes including improved relationships with customers, the ability 

to incorporate requirement changes even at later stages of a project, improvements in team cohesion and 

programmer job satisfaction, and significant improvement in product quality.  

However, agile software process designs are not without limitations. Doubts have been raised 

over the ability of agile software process designs to scale for large software projects, especially those 

distributed across different time zones (Turk et al. 2002; Lee et al. 2006; Begel and Nagappan 2007). 

Some studies have reported a negative impact of agile software processes on productivity, mostly citing 

work pattern disruptions and other inefficiencies induced due to the frequent informal meetings 

encouraged by agile methods (Begel and Nagappan 2007; Dyba and Dingsoyr 2008). Parnas (2006) 

highlights the dangers of a ―no document lean process‖ culture propagated by agile software process 

designs and notes that it is risky to rely on oral interactions to communicate detailed and precise software 

requirements. Similarly, Lee et al. (2006) note that conventional agile methods need to be modified to 

embrace more rigor and discipline in order to overcome communication and knowledge sharing 

challenges in globally distributed software development. Other scholars have highlighted a variety of 

organizational-, people-, and technology- related challenges of adopting agile software processes, 

especially for firms new to an iterative, collaboration-centric software development paradigm (Nerur et 

al. 2005). 
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2.3. Ambidexterity: Balancing Discipline and Agility 

Plan-based and agile software processes represent opposite ends of a process design continuum 

emphasizing efficiency and control on the one side and flexibility and responsiveness to change at the 

other end.  Given these extreme ends at the software process design continuum, process designs that are 

capable of balancing the tradeoff at different stages of a software project development cycle, rather than 

the choices at the extremes, can be expected to yield superior performance outcomes.  For example, Adler 

et al. (1999) reported how a Toyota subsidiary achieved superior flexibility-efficiency combinations 

through dynamic adjustments of the routine (efficiency-focused) and non-routine (experimentation-

focused) components of its organizational processes during turbulent periods of model changeovers. 

Organizational ambidexterity, i.e., the ability of firms to be responsive to changes while at the same time 

being able to carry out current activities efficiently, has a rich research tradition spanning several 

disciplines (e.g., Duncan 1976; Gibson and Birkinshaw 2004; O‘Reilly and Tushman 2004; Raisch and 

Birkinshaw 2008). A key postulation of the theoretical view is that ambidextrous firms institute process 

designs that dynamically combine exploitation (standardized, efficiency-focused routines) and 

experimentation (improvised, flexible, agility-focused routines) activities in order to shift challenging 

tradeoffs and achieve superior performance outcomes. In the Information Systems Development (ISD) 

literature, several theoretical conceptualizations of ambidextrous software process designs that support 

both flexibility and control have been proposed (e.g., Vinekar et al. 2006; Lee et al. 2007). Drawing on 

tenets from the theory of dynamic capabilities and control theory, Harris et al. (2009) propose controlled-

flexible process designs that adopt ―emergent outcome controls‖ as a way to avoid the sub-optimal 

process choices at the extremes of the process design continuum. 

Broadly, three key categories of antecedents for ambidextrous process capabilities have been 

identified in the organizational literature, namely, structural-, contextual-, and leadership- based 

antecedents (Raisch and Birkinshaw 2008). Structural antecedents, as the name implies, refers to the 

structural mechanisms that are put in place to deal with important tradeoffs that organizations face. Such 

mechanisms include, for example, spatial separation with separate units in charge of plan-based and agile 

processes and temporal partitioning with the same unit using both plan-based and agile process at 

different points in time. Contextual antecedents refer to the systems, processes, and beliefs that a firm 

puts in place to encourage individuals to handle the conflicting demands on their time in a desired way. In 

the software development context, this includes, for example, coping mechanisms for individuals dealing 

with the conflicting demands of documentation versus experimenting with new technologies (Lee et al. 

2006). Finally, the role of leadership, including the support of senior executives has been identified as an 

important antecedent of organizational ambidexterity.  
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In the ISD literature, Vidgen and Wang (2009), propose three principles rooted in complex 

adaptive systems theory to design ambidextrous software processes that can lead to better performance: 

matching or exceeding rates of change in the environment, creating necessary conditions for self-

organization, and creating routines for synchronizing exploration and exploitation activities. Austin and 

Devin (2009) developed a contingency framework that establishes the key conditions for the viability of 

ambidextrous process designs that realize efficiencies without sacrificing flexibility. The framework 

posits that an ambidextrous process design is viable only when it leads to a reduction in reconfiguration, 

coordination, and context-dependent experimentation costs leading to surpluses in software production. 

Based on their examination of 22 globally distributed software projects, Lee et al. (2006) propose a set of 

coping strategies that promote both flexibility and rigor in global software development and help teams 

respond to environmental changes efficiently. Boehm and Turner (2003b) propose a framework 

consisting of several software project-specific contextual variables such as the capability of the 

development team, customer involvement, requirements volatility, project size, and code complexity to 

balance agility and discipline in process designs.  

In summary, much of the theoretical work on ambidextrous software process design takes a 

distinctly prescriptive approach, laying out the conditions and parameters of ambidextrous design choices, 

with the underlying and untested assumption that such ambidexterity leads to better software project 

performance.  We set out to explicitly test this assumption in the current study.  With the goal of 

establishing a causal linkage between ambidextrous software process design and software project 

performance, we conducted an empirical investigation using a quasi-experimental setup. 

3. Ambidextrous Process Design: Quasi-Experiment at Research Site  

Our research site is a leading multi-national software development firm operating in 55 countries 

with over a hundred thousand employees and more than 6 billion dollars in revenues in 2010. A majority 

of the software development centers operated by the firm were assessed at CMMI level-5
1
 and the firm 

was also a recipient of the IEEE Software Process Achievement award (IEEE SPA 2010). The firm had a 

centralized Software Engineering Process Group (SEPG) that was responsible for governance of 

development processes. The SEPG had invested heavily in standardizing the development processes 

prevalent in the firm through the rigorous deployment of a plan-based process paradigm using the CMMI 

process framework. While project-specific tailoring of the CMMI Key Process Areas (KPAs) was 

allowed, the tailoring of processes and usage of any non-standard processes employed by individual 

                                                           
1 CMMI is an integrated process improvement framework developed by the Software Engineering Institute at the 

Carnegie Mellon University. Level-5 of the CMMI is the highest maturity level indicating quantitatively controlled 

and well-optimized processes. 
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projects typically needed prior approval and were actively monitored by the SEPG personnel. All project 

teams included dedicated Software Quality Assurance (SQA) personnel who were independent project 

team members reporting directly to the SEPG and not to the respective project managers. 

While the plan-based process paradigm implemented using the CMMI family of process 

frameworks had served the firm well, the SEPG wanted to adequately prepare itself for a turbulent 

environment of software process diversity as the firm embarked on a period of rapid business growth 

through ambitious acquisitions and expansions to new markets. Senior executive management 

enthusiastically supported and worked with the SEPG towards the launch of an organization-wide 

initiative to introduce a ―controlled-flexible‖ process design that fused agile software processes with the 

existing CMMI plan-based process framework. Separate financial resources were allocated for the 

initiative that covered training and other miscellaneous needs. A chosen SEPG team championed the 

initiative on a full-time basis and no other production duties (i.e., activities concerning a live commercial 

project) were assigned to this team. Thus, the structural, contextual, and leadership based process 

capabilities, which serve as important antecedents of organizational ambidexterity (Raisch and 

Birkinshaw 2008), were adequately fulfilled in the context of our research site. 

To develop the new controlled-flexible process design, the SEPG teams mapped the extensive 

CMMI KPAs with the chosen agile process frameworks (Extreme Programming (XP) and SCRUM) for 

operations under a seamless and uniform process governance framework
2
. The SEPG also implemented a 

set of collaboration and agile-methods specific tools for aiding projects to collect appropriate metrics and 

integrate them with the central project and process database of the firm. It is noteworthy to mention that 

while the SEPG had allowed more diversity of project-level software processes, no extensive changes 

were made to the central process governance structures, including the presence of independent SQA 

personnel in projects. Thus, the firm had put in place the adequate control mechanisms necessary to 

govern the introduction of new agile process components into established organizational routines. 

The SEPG began to roll out the newly developed ―controlled-flexible‖ process designs to newly 

starting projects by inviting ―heavyweight‖ project managers to participate in a pilot roll out. During the 

pilot roll out, project managers and team members who volunteered to use the new ―controlled-flexible‖ 

process design in their projects were first provided with adequate training in agile software process 

methods (XP and SCRUM) and the process mapping framework before they proceeded to tailor their 

project-level production processes. The initial success of the pilot projects and the positive perceptions of 

the participating project teams provided the necessary impetus for a broad roll out of the ambidextrous 

                                                           
2 A generalized example of such a mapping of CMM KPAs and Extreme Programming framework can be found in 

Paulk 2001. 
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―controlled-flexible‖ process design to all worldwide development centers of the firm. The choice of 

process design options (and several training modes) available for project teams was widely advertised 

throughout the firm. Project managers and team members of all newly starting projects had the full 

autonomy to choose between the new ambidextrous ―controlled-flexible‖ process design and the 

standardized (and well-established) plan-based process design depending on their own project contexts. 

At the time of our data collection, 154 projects had adopted an ambidextrous process design instead of a 

pure plan-based approach. 

3.1.1. Data Collection from the Quasi-Experiment 

We collected data from our research site in three phases. In the first phase, we conducted multiple 

field observations spanning over a month when one of the authors was resident at the research site. We 

interviewed the executive management and SEPG of the firm to understand the organizational context of 

the software projects-level data that we had planned to collect. Table 1 maps the key antecedents 

discussed in the organizational ambidexterity and process literature with our firm-level observations from 

the first phase of data collection. As mentioned in the previous section, our observations presented in 

Table 1 confirms that the empirical context exhibited the important structural-, contextual-, and 

leadership-related antecedents of ambidexterity identified in the literature, and that the quasi-experiment 

at the research site provided an excellent context to examine the effects of software process ambidexterity 

on project performance outcomes.  

In the second stage of our data collection, we utilized the software process selection and 

comparison framework proposed by Boehm and Turner (2003a, 2003b, pp.25-58) as a conceptual 

foundation to collect project-level data. The framework posits consideration of quantitative metrics such 

as the capability of the development team, customer involvement, requirements volatility, project size, 

and code complexity to assess the specific contextual requirements of a software project team in order to 

derive hybrid designs that balance agility and discipline. The second stage of our data collection effort 

resulted in an archival data set from 424 commercial software projects completed by the firm. The 424 

projects were the sample used in a recent CMMI capability reassessment exercise by an external team of 

CMMI auditors from KPMG. Since these projects had been audited multiple times by the external KPMG 

auditors and the firm‘s SEPG team, high confidence can be placed on the reliability and accuracy of the 

data. The variables in our data set gathered in the second stage of our data collection are presented in 

Table 2.  

In the third stage of our data collection, we embarked on a qualitative study through in-depth 

discussions with the project managers, team leaders, and team members of 154 software projects that 

implemented ambidextrous software process designs over a six-month period. The qualitative study 
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complements the large scale econometric analysis of the archival data collected in the second stage. The 

main goal of the qualitative study was to uncover in richer detail the individual balancing strategies that 

the projects teams employed in their ambidextrous process designs. 

Table 1. Summary of Firm-level Observations 

 Literature Reference Observation at our research site 

Ambidextrous Process Design Decision Factors 

Ambidexterity 

benefits 
Raisch and Birkinshaw 

(2008); 

Austin and Devin 

(2009) 

 Ability to accommodate process diversity due to mergers and 

acquisitions. 

 Rapid business growth and survival in a hyper-competitive 

industry. 

Ambidexterity 

costs 

 Increase in risks due to loss of predictability and control. 

 Additional governance expenditures. 

Organizational Antecedents of Ambidexterity 

Structure 

Gibson and Birkinshaw 

(2004);  

Raisch and Birkinshaw 

(2008) 

 Independence and autonomy of SEPG personnel and Project 

Management personnel. 

Context 

 Adequate support for project personnel in designing, tailoring, 

processes and reporting metrics. 

 Voluntary participation in experimentation. 

Leadership 
 Executive management support. 

 Adequate financial resources for process design experiment. 

Governance and Performance of Ambidextrous Process Design 

Emergent 

Outcome 

Controls 

Harris et al. (2009);  

Maruping et al. (2009) 

 Incremental metrics collection for different iterations. 

 Facility for both plan-based and improvised and collective 

decision making (through collaborative tools). 

Common 

Platform 

Lee et al (2006, 2007, 

2009);  

Vinekar et al. (2008) 

 Common SEPG governance of all process designs (through 

common mapping of KPAs and metrics). 

 Technology readiness through appropriate collaborative tools. 

Project Context 

and Performance 

Boehm and Turner 

(2003b) 

 Detailed project-level metrics collected for statistical quality 

control purposes. 

 Refer to Table 2 for list of variables. 

 

It is important to note that we did not experimentally control the allocation of the different 

software process designs for the projects, but only observe the choices made by the software teams and 

the corresponding performance consequence of those choices. In the absence of random assignment, 

observational data from the quasi-experiment encounters selection problems, and therefore causal 

interpretation by comparing the performance outcomes of groups following two different process designs 

becomes problematic. Potential outcomes methodology overcomes this difficulty by viewing causal 

effects as a comparison between two potential outcomes at a given time corresponding to a treatment that 

was applied, and addresses the selection bias problem through propensity score matching techniques 
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(Rosenbaum and Rubin 1983; Dehejia and Wahba 2002). Potential outcomes research method has been 

widely utilized in statistics, economics, and sociology to examine issues of causality, similar to our 

research question, through observational data (c.f. Rubin 2005). More recently, Mithas and Krishnan 

(2009) articulate the use of the methodology to answer research questions related to the information 

systems domain. The potential outcomes research methodology that we employ to analyze our quasi-

experimental data is explained in the next section and closely resembles the approach outlined by Mithas 

and Krishnan (2009).  

Table 2. Archival Data Variable Definitions 

Variable Definition 

Software process 

ambidexterity 

This is the treatment variable in the quasi-experiment; coded as 1 if projects used the 

―controlled-flexible‖ process design; coded as 0 if projects used the CMMI plan-based 

process design  

Productivity Function Points / Total project effort 

In-process defects Count of defects logged in the project before project delivery to the customer 

Delivered defects 
Count of defects logged in the project after project delivery to the customer (during the 

warranty period) 

Profitability % Profits / Total cost of the project 

Requirements 

volatility 
% Total effort spent on rework due to change in customer requirements 

Newness 

Dummy variable coded as 1 if the technology or/and design involved in the project was 

new to the project team (no prior experience). The value was self-reported by project 

managers. 

Client involvement % Total effort spent on engaging with end users 

Reuse % Code that was reused from existing libraries (either at the firm or from the customer) 

Team size Full time headcount of personnel involved in the project 

Team experience Average professional work experience of project team (in years) 

Project size Forward counted function points 

Project manager 

certification 

Dummy variable coded as 1 if the project manager possessed any professional 

certifications (e.g., PMI, SCRUM professional, etc); 0 otherwise 

Contract 
Dummy variable coded as 1 if the project followed a fixed price contracting scheme; 0 

for time and materials 

4. Archival Data Analysis 

4.1. Average Treatment Effect for Ambidextrous Process Design 

The first step in implementing a potential outcomes-based analysis through propensity score 

matching is to identify the treatment, outcomes of interest, and other covariates. In this study we define 

the choice of ambidextrous process design as the treatment, project performance variables as outcomes, 
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and the several ambidexterity antecedents identified through prior research as covariates. The causal 

effect we are interested in analyzing is the performance outcomes for the projects that chose an 

ambidextrous process design for software production. Since the covariates we selected for analysis were 

derived from a variety of well-established theories spanning the organizational ambidexterity, control 

theory, complex-adaptive systems, and software engineering literatures, we are confident in making the 

strong ignorability assumption involved in propensity score matching (Rosenbaum and Rubin 1983; 

Rosenbaum 1984) – i.e., we assume that the selection bias because of the lack of random treatment is 

mostly due to the correlation between the observed covariates and process design, and not because of 

other unobserved mechanisms. In section 4.3, we provide a sensitivity analysis to estimate the extent to 

which our study may be vulnerable to what we may have missed. Table 3 compares the observed 

characteristics of projects that chose an ambidextrous process design with the projects that chose the 

regular plan-based process of the firm.  

Table 3. Characteristics of Treatment and Control Groups Before Matching 

Variable 
Treated Sample 

(Ambidextrous process) 

Control Sample  

(Plan-based process) 

Sample size N 154 270 

Requirements volatility 20.27*** 12.83 

Newness 0.543*** 0.233 

Client involvement 22.214*** 14.18 

Reuse 4.577*** 2.007 

Team size 9.5143 11.407* 

Team experience 3.898 3.7445 

Project size 1757.5* 1291 

Project manager 

certification 
0.521** 0.393 

Contract 0.521 0.585 

Note: Significance levels for differences in means using t-tests on the larger of the two 

numbers across treatment and control groups; *p <0.10;**p<0.05;***p<0.01. F-statistic of 

Hotelling‘s T-squared test for all covariates was significant at P<0.01.  

 

From Table 3, we can see that there are statistically significant differences across the variables in 

the treated and control samples, lending support to the view that the choice of ambidextrous process 

design by certain projects was likely a non-random choice. On average, as highlighted in prior conceptual 

literature (Boehm and Turner 2003b; Vinekar et al. 2008; Austin and Devin 2009) projects that 

encountered higher level of requirements changes, end user engagements, and worked with newer 

technologies preferred ambidextrous processes over pure plan-based process designs. Also, smaller teams 

and projects that worked on larger code-bases and those with project managers who possessed 

professional certifications chose the ambidextrous process design.  Note that the treatment and control 

groups have not yet been matched using propensity scores to account for the non-random assignment. 
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In order to adjust for the non-random assignment in the quasi-experiment data, we calculated the 

propensity scores (i.e., the propensity of a project to use ambidextrous process design) using a logit model 

and employed a kernel-matching estimator. Our specification of the logit model was informed by prior 

theory regarding the antecedents of ambidexterity (section 2.3) and is given in equation 1.  

logit(ambidextrous process choice) = 0 + 1*(Requirements volatility) + 

2*(Newness) + 3*(Client involvement) + 4*(Reuse) + 5*(Team 

size) + 6*(Team experience) + 7*(Project size) + 8*(Project 

manager certification) + 9*(Requirements volatility) + 

10*(Contract) + ε …….Eq(1) 
 

Table 4. Logit Parameter Estimates for Propensity Score Calculation 

Variable 
Ambidexterity 

(logit model) 

Requirements volatility 0.016***  (0.007) 

Newness 1.629***  (0.00) 

Client involvement 0.0745***(0.000) 

Reuse 0.132***  (0.004) 

Team size -0.057*** (0.004) 

Team experience -0.139**   (0.019) 

Project size 0.192***   (0.002) 

Project manager certification 0.382        (0.145) 

Contract 0.231         (0.387) 

Chi-Square 137.55*** (0.00) 

Log-likelihood -202.919 

Goodness of fit AIC = 1.004, BIC = -2098.752 

Note: The model included an intercept; robust p-values in parenthesis; 

*p <0.10;**p<0.05;***p<0.01 

The logit parameter estimates are presented in Table 4. The Chi-squared test of the logit model shows that 

the selection model is significant compared with a model with no explanatory variables. Thus, we can 

conclude that the projects that chose ambidextrous process design differ significantly from those that 

chose plan-based process design with respect to the observed covariates. As posited by prior conceptual 

studies, projects that encountered frequent requirement changes, new technologies, higher levels of end 

user engagements, and smaller teams tend to choose ambidextrous software process designs over a pure 

plan-based approach. In contrast to expositions of prior research, we observe that experienced personnel 

at our research site preferred plan-based approaches and projects that handled larger (and more complex) 

code-bases chose ambidextrous process designs, suggesting the presence of both uncertainty-avoiding and 

risk-taking behavior profiles among project teams at the research site. 

When we employed kernel matching to calculate the propensity scores, matching estimators 

could not identify treatment effects for four observations that did not fall in the region of common support 
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(between propensity score estimations and kernel matching estimations). Bias stemming from non-

overlapping support is typically attributed to selection biases, and since we lost only four observations, it 

is not a signficant concern for our analysis. Table 5 lists the characteristics of the treatment and control 

groups after matching. As compared to the disparities between the treatment and control groups before 

matching (Table 3), we can see that the matched treated and control sample are very close to each other 

with respect to the observed covariates. Thus, a considerable amount of bias induced due to non-random 

assignment in the quasi-experiment has been reduced through propensity score matching.  

Table 5. Characteristics of Treatment and Control Groups After Matching 

Variable 
Treated Sample 

(Ambidextrous process) 

Control Sample 

(Plan-based process) 

Sample size N 154 270 

Requirements volatility 20.025 18.681 

Newness 0.537 0.558 

Client involvement 21.966 22.75 

Reuse 4.1881 3.9969 

Team size 9.625 10.53 

Team experience 3.8 4.1 

Project size 1800 2462.6 

Project manager certification 0.507 0.539 

Contract 0.529 0.542 

Note: t-tests for differences in means were performed and no differences were found even at 

p≤0.10, suggesting a good matching on all observed covariates. We also conducted 

Hotelling‘s t-squared test for all covariates. The resulting F statistic was not significant.  

 

In order to assess the performance implications of ambidextrous process designs and establish a 

causal linkage between process choice and several dimensions of project performance, we computed the 

average treatment effect of ambidextrous process design. Using the propensity scores, we utilized the 

Gaussian function for Kernel matching, to calculate average treatment effect on the treated sample across 

productivity, delivered defects, in-process defects, and overall project profitability variables. These results 

are presented in Table 6. We find that the ambidextrous process design positively contributes to achieving 

better project performance, including on the average about 9% higher productivity, 50% reduction in 

delivered defects, 12% reduction in internal defects, and about 3% improvement in overall profitability. 

This result establishes the causal linkage between software process ambidexterity and better project 

performance and answers the key research question of the study. While we have empirically established 

that ambidextrous process designs improve performance, given the turbulent project environments and 

varying contextual factors, it is not clear if all projects benefit equally from process ambidexterity. We 

assess this question in the next section by analyzing treatment effect heterogeneity.  
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Table 6. Overall Treatment Effect on Treated Using Kernel Matching 

 Treated Control Difference 

Productivity 

Before Matching 0.266 0.132 0.133 

After Matching* 0.267 0.243 
0.023** 

(9.46%) 

Delivered defects 

Before Matching 28.293 27.963 0.329 

After Matching* 29.1 58.244 
-29.148** 

(-50.04%) 

In-process defects 

Before Matching 517.979 463.144 54.834 

After Matching* 509.081 580.424 
-71.343** 

(-12.29%) 

Profitability 

Before Matching 44.477 39.243 5.234 

After Matching* 44.413 41.678 
2.734** 

(%) 

Note: *Kernel Matching using Gaussian function; **Average treatment effect on the treated 

4.2. Treatment Effect Heterogeneity 

In this section, we analyze the heterogeneity of the treatment effect to examine whether all 

software projects benefited equally from an ambidextrous software process design. Following guidelines 

from prior research (Dehejia and Wahba 2002; Mithas and Krishnan 2009), we used propensity score 

stratification and classified all observations in to five subclasses based on estimated propensity scores.  

We made sure that the covariates balanced across treatment and control units in each of the five strata 

enabling a fair comparison of the treated and control groups. Figure 1 shows the distribution of propensity 

scores of treated and control subjects in each stratum. Based on the propensity scores, projects in stratum 

1 were predicted to have the lowest propensity to adopt an ambidextrous process design whereas projects 

in stratum 5 had the highest propensity to use ambidextrous process design for their operation. Figure 2 

shows the variation of the estimated average treatment effect, i.e., the effect of choosing an ambidextrous 

process design on the four performance variables that are used in this study within each stratum of 

projects. 

The results from our treatment heterogeneity analysis imply that projects that were least likely to 

adopt an ambidextrous process choice benefit more if they chose an ambidextrous process design. For 

example, adoption of the ambidextrous process design by the projects in stratum 1 would result in about 

141% increase in productivity, 71% reduction in delivered defects, 17% reduction in internal defects, 

43% improvement in profitability – overall a significant improvement in project performance. On 

average, the projects in stratum 1 (low propensity to adopt ambidextrous processes) had personnel with 

more professional experience. Our results show that if these highly experienced personnel were provided 
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with agile process methodology training and encouraged to balance their chosen plan-based approach 

with elements of agile methodologies as mapped by the SEPG, significant performance benefits could be 

realized.  

 
Figure 1. Propensity Score Distribution Across Strata 

Note: AMB: ambidextrous process design; STD: standard plan-based process design 

 

Projects in stratum 5 (projects that were more likely to adopt an ambidextrous process) exhibit an 

interesting behavior. On average, they perform poorly with respect to productivity (33% lower) but 

significantly outperform with respect to decreasing delivered defects (83% lower defects). A significant 

chunk of the projects in this stratum were very large projects (with respect to code-base size) that chose to 

adopt the ambidextrous process design. These projects seem to depict the classic productivity-quality 

tradeoff encountered in large software products (Krishnan et al. 2000) – they seem to focus on improving 

quality at the expense of productivity. Despite the presence of such a tradeoff, through an ambidextrous 

design of their process, these projects are still able to post better overall performance with respect to 

profitability (12% higher). 

In sum, our analysis of the treatment effect heterogeneity shows that not all software projects 

benefit equally along all the four project performance outcomes by adopting an ambidextrous software 

process design. We discuss the implication of this result for the design of ambidextrous processes in 

section 6. 
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Figure 2. Treatment Effect Heterogeneity 

4.3. Sensitivity Analysis 

We analyze the sensitivity of estimated causal effects presented in Table 6 to potential violations 

of the strong ignorability assumption of the propensity score methodology (Rosenbaum 1984). These 

results are presented in Table 7. The sensitivity analysis tests the extent to which our results from the 

propensity score analysis is robust to any potential unobserved characteristics that we did not account for 

in the ambidextrous process choice model (logit model specified in equation 1). Gamma reported in Table 

7 measures the hypothetically induced differences to treatment and control group assignments as a result 

of potential unobserved characteristics. For example, Gamma=5 when compared to Gamma=1 signifies a 

500% difference in treatment and control group assignments (from the one used by this study) due to 

potential unobserved characteristics. Our results reported in Table 7 show that even at a very large 

hypothetically induced bias (differences to treatment and control group assignments), the causal effects 

predicted by our analysis are robust. Thus, high confidence can be placed on our results and the 

theoretically guided choice of covariates used for potential outcomes analysis of this study.  
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Table 7. Sensitivity Analysis of Ambidextrous Process Design 
Gamma* Significance Level 

Productivity 

1 0 

5 0 

5.5 1.2e
-15

 

6 1.2e
-14

 

Delivered Defects 

1 0 

5 0 

5.5 2.2e
-16

 

6 3.2e
-15

 

In-Process Defects 

1 0 

5 0 

5.5 5.6e
-16

 

6 8.8e
-15

 

Profitability 

1 0 

5 0 

4.5 1.1.e
-16

 

5 5.9e
-15

 

Note: Sensitivity analysis on the average treatment effect on the treated; *Log 

odds of differential assignment to treatment because of unobserved factors 

5. Qualitative Study 

 The main goal of our qualitative study was to uncover patterns on how the project teams went 

about balancing the plan-based and agile components in their ambidextrous software process designs in 

order to achieve superior project performance. The qualitative study involved discussions with project 

managers, module leaders, and team members of the 154 software projects that followed ambidextrous 

process design for software development (i.e., the treated sample in the quasi-experiment). We held a 

total of thirty group discussion sessions in three rounds over a six-month period. Each discussion session 

had at least one project manager, module or team leader, and programmer and lasted about an hour. The 

first round of discussions were open-ended and focused broadly on describing the projects, client 

relationships and behavior, work breakdown structures, specific challenges encountered in the projects, 

technologies involved, project performance, and unique software processes followed in the projects 

including what the participants considered as best practices.  Similar to other qualitative software process 

studies (Sarker and Sarker 2009), we analyzed the data from our discussions in an iterative fashion using 

constant comparisons and allowing for inductive reasoning.  

Our analysis of the first round of discussions corroborated the broad patterns observed in the 

archival data analysis, but also raised several questions on how the teams went about balancing the plan-

based and agile components. We therefore conducted two more rounds of discussions with the same set of 

individuals. The discussions in the last two rounds of the qualitative study were more narrowly focused 
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on the specific dimensions of the balancing strategies identified in the initial round. Our notes from the 

three rounds of discussions form the basis of our qualitative analysis and inference. 

 We began coding the interview transcripts using in vivo codes using the lexicon of terms 

discussed by the respondents. As we coded the data, we looked for emergent themes, visualizing the 

relationship between different parts of the data and established theoretical ideas in the literature. The main 

theoretical concepts that guided our analysis, comparison, and inference were related to the tradeoff 

shifting mechanisms reported in prior organizational ambidexterity literature (e.g., Adler et al. 1999; 

Gibson and Birkinshaw 2004) and the emerging body of literature on controls in agile and flexible 

software development (Boehm and Turner 2003b; Harris et al. 2009, Maruping et al. 2009, Vidgen and 

Wang 2009). As we progressed through the iterative analysis, we added additional code labels to the 

transcript passages representing appropriate theoretical constructs that we identified in the ambidexterity 

and software process literature. Coding reliability was mainly established through two stages of review by 

an independent academic researcher and a practitioner expert with more than fifteen years of software 

project management experience. Together, the independent reviewers covered more than 80% of the 

qualitative data and after resolving a few minor discrepancies, achieved a high level of congruence in 

accepting our final coding scheme. The inter-rater reliability as measured by Cohen‘s Kappa was 0.9. We 

report our findings from the qualitative study in the next section.  

5.1. Qualitative Study Results 

 First, we observed that the balancing tactics employed by project teams spanned multiple 

dimensions including individuals, teams, software artifacts, and cross-functional processes lending 

support to prior research propositions that flexible process designs need to be viewed as a multifaceted 

and multilevel concept spanning people-, technology-, and environment-related factors (Boehm and 

Turner 2003b; Sarker and Sarker 2009). Further, early in our discussions with the participants, we 

discovered that the teams often associated their balancing tactics with anticipated or observed changes in 

their operating environment. In other words, the trigger for a rebalancing act that altered the composition 

of plan-based or agile elements in a project‘s process design was often attributed to ‗proaction‘ in advance 

of change, ‗reaction‘ to change, or ‗learning‘ from change  – the primary dimensions identified in the ISD 

literature to assess process design agility (c.f., Conboy 2009). In the later rounds of our discussions, we 

utilized this taxonomy to garner specific examples of balancing plan-based and agile aspects in process 

designs. Overall, the balancing tactics we uncovered can be organized along four key dimensions: 

tradeoff shifting mechanisms, client relationships, artifact specification, and project governance. The 

specific balancing tactics we uncovered along these dimensions, the corresponding literature references, 

and the dominant plan-based and agile components of the tactics are summarized in Table 8. 
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Tradeoff Shifting Mechanisms 

Meta-Routines: Discussion participants emphasized that a key enabler of software process ambidexterity 

in their projects was the extensive use of detailed and standardized process templates, which enabled 

software development meta-routines regardless of whether the teams used specific plan-based or agile 

process components in their methods.  Meta-routines enabled by the process maps systematize problem-

solving procedures (c.f., Adler et al. 1999) providing a common organization-wide platform for 

accommodating changes (Feldman and Pentland 2003). Process maps helped the project teams to be 

flexible with the specific implementation approach of KPAs of diverse process methods, and 

simultaneously facilitated independent audit and verification by authorities outside the project team such 

as the organizational SEPG and external auditors. Moreover, the operational infrastructure for using and 

reporting process templates and tailoring project-level process designs was fully automated, thus avoiding 

unnecessary resource overheads for manual reporting and documentation, facilitating lean and well-

controlled meta-routines. 

Partitioning: Project teams followed context-specific partitioning mechanisms for bounding the scope of 

plan-based and agile components of their processes. Spatial partitioning of sub-units and temporal 

partitioning of tasks within a unit have been reported to aid ambidexterity in prior literature (Adler et al. 

1999; Puranam et al. 2006). We did not find any sub-unit structural partitioning mechanisms at our 

research site, but teams followed temporal task partitioning to balance plan-based and agile process needs. 

Broadly, when requirements were ambiguous and uncertain, teams started on an agile process footing and 

moved on to more plan-based methods at later stages of the project when a stable design had evolved. The 

following narrative from a project manager illustrates a temporal partitioning strategy: 

―A client power-user worked intensely with us for a month at the start of the project. The focus at 

that time was on rapidly figuring out what the end user wanted, what could be done with the 

existing systems, and what we could deliver within the schedule. Since no one had answers to all 

the questions, we had to progress in rapid cycles. Our design kept changing everyday and 

whiteboard pictures captured on our cell phone cameras was the basis of our documentation. But, 

once the system design was finalized, we started planning in detail for the rest of the project 

duration [6 months]. There was no spiraling after that…‖  

Teams that had started their project on a stable and well-planned footing rebalanced their methods to 

include more agile components at times of turbulence due to external shocks, as recounted by a team 

leader: 

―As the project was for a repeat customer, we knew the system well. We made detailed project 

plans and design document that were approved by the client team. We used to send our [balanced] 

scorecard reports to the client every week as the build progressed. But, at one point of the project 

when the client applied a new patch from another platform vendor, an important module stopped 

working. Suddenly, nothing seemed to progress. Numbers [on the balanced scored report] looked 
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so bad that we stopped sending it to the client. We had to suddenly find alternate ways of doing 

things. That‘s when we started resorting to problem frames, small releases, continuous integration, 

and collective ownership of system environment [with the client]. It turned out that the only plan 

we kept was the delivery deadline; everything else changed on a day-to-day basis.‖ 

While the application of specific partition mechanisms varied across the project contexts, what 

was common among the projects was the use of scope and temporal boundaries for bounding the 

application of plan-based and agile process components. Although the teams frequently switched between 

the boundaries of plan-based and agile process components depending on their context, the common 

platform of process maps, which connected the context-specific process elements to meta-routines, 

facilitated task-level accounting and traceability of expenditure. The teams handled potential impediments 

to learning due to the partitioning of plan-based and agile process boundaries and frequent switching 

between them through a combination of formal and ‗on-the-job‘ training through peer mentors. Learning 

from each other through peer-reviews and pair programming was the most common informal mechanisms 

that came up in our discussions. Formal training was handled through an organization-wide education unit 

that conducted both in-class room and online courses on a variety of project management, quality 

management, and technical topics.  

Client Relationship  

Relational capital with clients played an important role in how the project teams balanced plan-based and 

agile components in the process design.  Teams followed user-centered design principles and standards 

(ISO9241-210, 2010) and had personnel in multiple roles interact with end users and client managers. 

However, project teams often encountered significant variation in client involvement during the course of 

a project lifecycle, and the extent of client involvement during specific stages of the project lifecycle 

determined if collective ownership to issues could be forged or if relationships centered on more formal 

contractual norms such as service level agreements (SLAs).  The following quote from a software 

engineer captures the logic of balancing agile and plan-based process components in day-to-day work 

using the client relationship axis: 

―I have to work with different departments of a client. Some [end-users] require detailed 

documentation and cost justification for everything, others are more trusting and approve changes 

over a phone call, and a few won‘t even open documents or read emails [that I send them]. You 

can‘t expect all end-users to know what is permitted and what is not permitted according to the 

project contract, and you can‘t throw around contract terms to end users who are normally 

helpful…‖ 
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Table 8. Control and Flexibility Balancing Mechanisms 

Balancing Dimension 

 

Sample Literature 

Reference 

Balancing Tactic 
Discipline and Control 

Component 

Flexibility and Improvisation 

component 

Tradeoff Shifting Mechanisms        

Meta-routines 

 

Adler et al. (1999); Gibson 

and Birkinshaw (2004); Raish 

and Birkinshaw (2008); 

Puranam et al. (2006). 

Use of standardized process 

mapping template.  

Standard mapping of templates 

facilitate independent auditing 

and traceability. 

Malleability of process components 

depending on project context.  

Partitioning 

Separation of process component 

based on software lifecycle stage 

and context.  

Boundary of non-routine and 

experimentation activities well 

defined. 

 Autonomy of improvisation without 

detailed approvals within the defined 

task boundaries. 

Switching 
Swapping process methods across 

iterations, and lifecycle stages.  

Activity and task-level 

accounting of resource 

allocation. 

 Flexibility in iteration lengths 

(sprints) and planning games. 

Enrichment 

Process-based learning and 

frequent on-the-job peer-level 

training.  

Tracking of individual team 

member-level skill set and 

capabilities. 

 Highly capable and cohesive pair-

programming teams. 

   

Client Involvement and 

Relationship 

Gronbaek et al. (1993); 

Leonard and Rayport (1997) 

Follow empathic and participatory, 

user-centered design principles. 

Bounded targets for Service 

Level Agreements (SLA) and 

traceability of performance. 

Frequent involvement of end-users 

and collective decision-making. 

Artifact Specification        

Requirements 

Gomaa and Scott (1981); 

Davis et al. 1997); Morgan 

(2006, pp.110-11) 

―Living requirements‖ with 

iterative prototyping. 

Clear and sufficient 

documentation for reference. 

Constant review of end-user 

requirements and tacit specifications. 

Design 
 Model-driven and aspect-oriented 

specifications. 

Scope boundaries of functional 

and non-functional 

requirements well defined. 

Collective ownership of design (i.e., 

responsibility of all programmers) and 

constant refactoring possible without 

jeopardizing customer needs.  

Project Governance  

Measurement and 

Performance Management 

Fenton and Pfleeger (1998); 

Gopal et al. (2002, 2005) 

 Common platform and uniform 

and standardized procedures for 

metrics collection across process 

designs. 

Statistical quality control and 

independence of SEPG and 

production teams ensured. 

Flexibility of metrics design; simple, 

unobtrusive collection of metrics.  

Controls 

Kirsch (1997); Harris et al. 

(2009); Maruping et al. 

(2009) 

 Emergent Outcome Controls. 

Objective, data-based 

comparison of outcomes and 

plans that are traceable to tasks. 

 Frequently evolving and continuous 

targets for project outcomes. 

Volatility and Change 

Management 

Barry et al. (2006); Vidgen 

and Wang (2009) 

Change requests part of ―living 

requirements‖ and negotiations 

bounded by the specifications and 

SLA targets. 

Changes logged and recorded 

for independent analysis. 

Simplified negotiations for changes 

enhance efficiency of empathic design 

and frequent end user-involvement. 

Critical Incident 

Management 
Keil (1995)  

Joint escalations (client-vendor) to 

upper management.  

Active involvement and 

verification by senior 

management. 

 Collective ownership of problems 

between end-users and programmers. 
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Artifact Specification 

Documenting specifications that establish the common ground for different stakeholders in a software 

development project including end-users, programmers, architects, testers, and project managers needs to 

accommodate multiple viewpoints and is often resource intensive (Davis et al. 1997). Teams balanced the 

plan-based process requirement for reliable and comprehensive documentation with the agile process 

emphasis on working software by adopting mechanisms that facilitated ―minimum critical specifications‖ 

(c.f., Morgan 2006, pp. 110-111). Some of the mechanisms that came up in our discussions included 

model-driven and aspect-oriented specifications, and iterative prototyping. Utilizing these specification 

tools and mechanisms in lieu of comprehensive natural language documents, teams were able to 

adequately create a common project reference source and also facilitate responsive action through 

continuous refinement, refactoring, and functionality change without bureaucratic negotiations. 

Project Governance 

As mentioned earlier, the teams were able to leverage process maps to implement task-level accounting of 

expenditures and extensive traceability mechanisms required by the organizational metrics program 

prevalent at the research site. As reported in prior research (Gopal 2002; 2005), the metrics program 

formed the basis of a rigorous performance measurement regime that helped institute relevant project 

controls in the projects. With a disciplined and structured approach enforced by the metrics program, 

process maps helped establish flexibility at the project level, and facilitated teams pursuing ambidextrous 

process designs to institute metrics that were relevant and meaningful to the project context. Project 

tracking and reporting were tailored for the partitioning mechanisms used by the teams and were used by 

the SEPG to derive organization-wide benchmarks for comparison and statistical quality control 

mechanisms. Thus, a rebalancing act between plan-based and agile components of the project-level 

process design did not disrupt functioning of project governance mechanisms. A project manager‘s 

comment illustrates the above result: 

―Metrics collection is not a separate effort for us. It is part of the process. The only question was 

whether metrics can live our written vs. verbal lifestyle as we switch from waterfall to sprints 

[SCRUM iteration]. We know [that] we don‘t want it to be your word versus my word in our 

client meetings, planning meetings, or in our sprint standup meetings. Reportable metrics that map 

to the client needs is thus very important. We only collect what we think are useful for our 

meetings, and we report what we use.‖  

Similar to the findings reported by Harris et al. (2009), we noticed that the teams pursuing 

ambidextrous process designs used data from the metrics program to institute effective emergent outcome 

controls. The portfolio of emergent outcome controls included scope boundaries and iterative feedback 

mechanisms such as temporal partitioning of problem frames and minimum critical specifications that 

kept spiraling towards final deliverable working software. The rigorous measurement and performance 
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management mechanisms along with a portfolio of emergent outcome controls provided the necessary 

infrastructure for the teams and external stakeholders for data-driven decision-making on changes and 

critical incidents, and helped forge an environment of collective ownership. Changes were logged and 

monitored for independent analysis by both the internal and external stakeholders, and when necessary, 

they were used for bounding the limits of service level agreements. Committees involving members at the 

same functional level from the development and client teams handled critical incidents, facilitating joint-

escalation schemes, which reduced reporting bias and coordination impediments (Keil 1995). The 

following comments from a team leader provides a narrative illustration: 

―When we started using XP with SCRUM for CMMI Level-5 KPAs, the real tension points were 

the reports for [our] account and delivery managers. Account managers and delivery managers 

want reports because they make decisions when things go bad — when we miss a delivery or 

when [customer satisfaction] rating is low. But, they don‘t have time for daily standup meeting 

reports and verbal satisfaction scores are not good enough. [Client] users have the same problem 

too. They have their managers to report to. So, we came up with a simple checklist that we jointly 

fill in our planning and standup meetings. The checklist is collated by quality assurance for 

account and delivery managers. When there are problems we go to managers to negotiate as one 

team…‖   

 In summary, teams that pursued ambidextrous process design at the research site were able to 

achieve the discipline and control requirements of plan-based processes and the flexibility and 

improvisation focus of agile processes using several balancing tactics. Teams overcame typical 

impediments to ambidextrous designs by leveraging peer-learning, relational capital, emerging 

specification techniques and project governance modes that forged collective ownership and data-driven 

decision making.  

6. Discussion 

To shed an alternative perspective on the ongoing debate between plan-based and agile software 

processes, we examined the notion of software process ambidexterity and assessed the value of 

ambidextrous software process designs. The results from our analysis establish the significant and 

positive causal linkage between software process ambidexterity and a variety of project performance 

measures. Based on the empirical results from detailed project-level data and our qualitative observations, 

we now proceed to discuss managerial implications, especially the different steps that are needed in a 

pathway towards achieving software process ambidexterity in firms.  

6.1. Pathway to Software Process Ambidexterity 

The nested cycles of the needs of SEPG and project personnel that influence the characteristics of 

realized software process design is a key source of tension between the different organizational groups 

involved in software production. While organizational-level SEPG personnel desire standardization and 

control for better predictability, context-specific improvisations and adaptations are desired by project-
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level personnel to aid better customer-orientation and cope with environmental volatility (c.f., Austin and 

Devin 2009; Barry et al. 2006; Lee et al. 2006). Figure 3 depicts a generalized representation of the 

nested cycles of needs, which we uncovered from our analysis of project data and qualitative analysis. 

The nested cycles move across the process design continuum with an agile methods emphasis on the one 

end and plan-based emphasis on the other. The corresponding coordination and governance mechanism 

enforced by the SEPG is thinner (lesser resources spent on monitoring and control) near the agile methods 

end of the process design continuum and relatively thicker (more resources spent on monitoring and 

control) on the plan-based methods end of the process design continuum. The characteristics of the 

projects selected and executed by the firm (i.e., market-driven environmental factors) pull and push the 

nested cycles (and the associated tensions) between SEPG and project-level teams across the software 

process design continuum axis. 

The first necessary step to turn the nested tensions depicted in Figure 3 into a virtuous cycle of 

ambidexterity in software firms is to create the appropriate structural and operational support mechanisms 

(c.f., Andriopoulos and Lewis 2008). Structural support mechanisms ensure adequate ―separation of 

concerns‖ between organizational-level governance personnel and project management personnel, and 

provide the necessary autonomy for independent action. Operational support mechanisms provide the 

necessary loose-coupling coordination routines between these autonomous units, enabling a common 

support region for independent, yet interrelated action. For example, at our research site the SEPG 

personnel and project managers were on the same hierarchy, acted independently without bureaucratic 

micro-management of each other‘s functioning. The control and experimentation design space of the 

SEPG personnel and the project managers respectively were constrained by a forcing common platform 

of governance function instituted by the firm‘s cross-functional centralized productivity office, which 

directly came under the purview of senior management (CEO‘s office). Such structural and operational 

support mechanisms help firms create an environment conducive for software production using 

ambidextrous software process designs.  
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Figure 3. Nested Cycles of Software Process Ambidexterity 
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implementing effective process traceability mechanisms and integrating knowledge management 

practices with the regular activities of a software development lifecycle (e.g., Ramesh 2002; Rus and 

Lindvall 2002) pave way for mechanisms that could curtail sub-optimal choices in software organizations 

that deploy ambidextrous process designs. 

6.2. Limitations and Future Research 

There are several limitations of this study that future research could address. First, since we 

observed only custom (bespoke) software development projects, we should be cautious in generalizing 

our results across all software development projects (maintenance, reengineering, product development, 

etc). The research methodology and the potential outcomes empirical analysis utilized in this study can be 

replicated in other software development settings and future research could embark on such replication 

and comparative analysis. Second, we did not observe the long-term impacts of ambidextrous process 

design and only studied the impact on immediate project performance outcomes. Future research could 

examine the long-term impacts of software process ambidexterity on learning curves and capability 

development of project teams. Third, our empirical context was limited to the examination of process 

evolution from a standardized plan-based starting point to an ambidextrous process design. Other 

variations of the process design evolution (for example movement from agile processes to ambidextrous 

process) need to be investigated and results compared with our findings. Finally, the distinct coexistence 

of several process designs in a software production ecosystem and the way these diverse process designs 

can be mapped to each other, controlled, and governed warrants further examination. We believe that 

these are fruitful lines of enquiry for future research on software process ambidexterity.  

7. Conclusion 

Reconciling the opposing approaches of plan-based and agile software process designs, we 

advanced the notion of software process ambidexterity and examined the antecedents and consequences 

of process designs that promote flexibility and improvisation without compromising discipline and 

control. The large-sample empirical results reported in the study establish the value of ambidextrous 

process designs. Our in-depth qualitative analysis of the balancing tactics employed by projects pursuing 

ambidextrous process designs shows that the common impediments to tradeoff shifting mechanisms can 

be overcome when ambidextrous rebalancing of plan-based and agile process components is hinged on 

client relationships, project governance, and efficient artifact specifications. We believe that this study 

lays a good foundation to ―move beyond the entrenched disagreements about planning versus agility‖ 

(Austin and Devin 2009) and establishes a rigorous case for usefully combining the disparate control and 

flexibility-focused components of software development methodologies to create a new generation of 

process innovations in the hypercompetitive software industry. 
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