4/30/24, 12:56 PM

In [1]:

In [2]:

In [3]:

In [4]:

ICA11_Decision_tree_extra_credit - Jupyter Notebook

from sklearn import tree

from sklearn.model selection import train_test split

from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn import datasets

from sklearn.tree import DecisionTreeClassifier

import pandas as pd

import numpy as np

from statistics import mean

import matplotlib.pyplot as plt

INPUT_FILENAME The name of the file that contains the data (CSV format)
TRAINING_PART The amount of data used to train the model

(0.5=50% of observations for training; 56% for valid:
MINIMUMSPLIT Controls the number of observations in each node

MAX_DEPTH Controls the number of nodes in the tree

OUTPUT_COLUMN The name of the column we'd Like to predict
INPUT_FILENAME = "titanic.csv"

TRAINING_PART = 0.6

MAX_DEPTH =4

MINIMUMSPLIT = 63

OUTPUT_COLUMN = 'Survived'

#turning csv file to pandas dataframe & separating features and the Label
df = pd.read_csv(INPUT_FILENAME)
df = df.dropna(axis=0, how='any"')

features = df.drop(columns = ['PassengerId', OUTPUT_COLUMN])
target = df[OUTPUT_COLUMN]
print(features)

Male Age Fare

(4] 1 80.00 30.00
1 1 74.00 7.78
2 1 71.00 34.65
3 1 71.00 49.50
4 1 70.50 7.75
709 1 ©0.83 18.75
710 0 0.75 19.26
711 0 0.75 19.26
712 1 0.67 14.50
713 1 ©0.42 8.52

[714 rows x 3 columns]

#getting the dummy values of the dataframe
dummyFeatures = pd.get_dummies(features)

localhost:8890/notebooks/Desktop/TU Spring 24/MIS 2502 - Data %26 Analytics/MIS2502workspace/extra credit/ICA11_Decision_tree_extra_credit.ip...

13

4/30/24, 12:56 PM

In [5]:

In [6]:

In [7]:

localhost:8890/notebooks/Desktop/TU Spring 24/MIS 2502 - Data %26 Analytics/MIS2502workspace/extra credit/ICA11_Decision_tree_extra_credit.ip...

ICA11_Decision_tree_extra_credit - Jupyter Notebook

#splitting the dataset into a training and testing set

xTrain,xTest,yTrain,yTest = train_test_split(dummyFeatures, target, train_size

#setting parameters for decision tree

dTree = DecisionTreeClassifier(max_depth = MAX_DEPTH, min_samples_split = MINII

#fitting the tree to the training model
dTree.fit(xTrain, yTrain)

featureNames = list(dummyFeatures.columns)

fig, ax = plt.subplots(figsize
tree.plot_tree(dTree, node_ids
plt.show()

(40,20))

node #0
Male <= 0.5
samples = 100.0%
value = [0.593, 0.407]
class = 0

node #1 node #8
Fare <= 40.635 Age <=13.0
samples = 36.2% samples = 63.8%
value = [0.252, 0.748] value = [0.788, 0.212]
lass as:

node #2 node #10
Fare <= 10.48 o Fare <= 26.27
samples = 24.3% samples = 58.4%
value = [0.356, 0.644] . value = [0.824, 0.176]

node #4 node #11
Fare <= 27.825 Age <= 32.5
samples = 18.0% samples = 41.8%
value = [0.286, 0.714] value = [0.894, 0.106]
class las:

node #5
samples = 15.2%
value = [0.215, 0.785]
class =1

node #6
samples = 2.8%
value = [0.667, 0.333]
class = 0

node #12
samples = 27.3%
value = [0.855, 0.145]
class = 0

#Getting predictions based on training and test sets
yTrainPred = dTree.predict(xTrain)
yTestPred = dTree.predict(xTest)

#evaluating the accuracy of each

trainAccuracy = accuracy_score(yTrainPred, yTrain)
testAccuracy = accuracy_score(yTestPred, yTest)
print(trainAccuracy, testAccuracy)

0.8014018691588785 0.7657342657342657

Generating Confusion Matrices for the training set:
predicted = yTrainPred

observed = yTrain

confusionMatrix = confusion matrix(observed, predicted)

print(confusionMatrix)

[[229 25]
[60 114]]

True, proportion = True, impurity = False, foi

2/3

4/30/24, 12:56 PM

In [8]:

In [9]:

In

In

In

In

[1:

[1:

[1t

[1t

ICA11_Decision_tree_extra_credit - Jupyter Notebook

Generating Confusion Matrices for the validation set:
predictedVval = yTestPred

observedVal = yTest

confusionMatrixVal = confusion_matrix(observedVal, predictedval)

print(confusionMatrixval)

[[150 20]
[47 69]]

Correct Classification Rate:

Check whether there is a match between each predicted value (in pred) and the
predRateTraining = mean(yTrainPred == yTrain)

predRateValidation = mean(yTestPred == yTest)

trainingPercentage "{:.2%}".format(predRateTraining)

validationPercentage = "{:.2%}".format(predRatevalidation)

print("The correct classification rate based on the training set is " + traini
print("The correct classification rate based on the validation set is " + vali

The correct classification rate based on the training set is 80.14%
The correct classification rate based on the validation set is 76.57%

localhost:8890/notebooks/Desktop/TU Spring 24/MIS 2502 - Data %26 Analytics/MIS2502workspace/extra credit/ICA11_Decision_tree extra credit.ip...

3/3

