Assignment 8: To Do list (Using APIs)

We have been learning about using GET and POST communication to interact with API endpoints. In this assignment we will use the $.getJSON() and $.post() jQuery methods to implement a simple “to do” list application.
Make note of the following URLs. This “todo” API is written in such a way that it will hold data for 24 hours. Data added to the “to do” list will automatically wash out of the server’s memory after one day. This is by design!
	URL
	Notes

	https://misdemo.temple.edu/todo
	Describes the features.

	https://misdemo.temple.edu/todo/addtask
	POST to this URL to add a task. You must pass “task” and “task_owner” as URL encoded data. This API feature returns confirmation data in a JSON array.

	https://misdemo.temple.edu/todo/tasks
	GET from this URL to retrieve all tasks for a certain name. You must pass “task_owner” as URL encoded data to get the tasks for a specific owner. The tasks are returned a JSON array.

Recall the basic structure of the jQuery $.getJSON() method.
$.getJSON(someurl , serialized_data , function(data){ });
Recall the basic structure of the jQuery $.post() method.
$.post(someurl , serialized_data , function(data){ });
Instructions
1. Starting with assignment19_todo.zip, notice that there is a hidden field with an id of “task_owner” and a value of “Marvin”.
Change “Marvin” to your TUID. The value you specify will be used to differentiate your “to do” list from everyone else’s.
2. Notice the “Add Task” button and the “Refresh Task List” button, already created.
3. Inspect the <script> tag found in index.html.
a. Create a function called add_task. It should serialize the data on the form and POST the data to the addtask endpoint.
b. When a task is added, show a confirmation message in the <div> tag provided. The message can be “task added OK”. Use the jQuery .html() method and the id of the tag to do this.
c. Write a function named get_tasks. It should contain the code necessary to GET data from the tasks endpoint. Loop through the data returned by the API and append each task to the existing unordered list. Use the jQuery .append() method to append new data onto the end of the existing ul tag..
4. Upload your work to the class server when you are done. Test it!
CONTINUED…

How will this assignment be graded?

	Item
	Point Value

	All files / folders uploaded correctly
	10

	Wrote the code necessary to POST data to the addtask endpoint. Works.

	30

	When a task is added, a confirmation message in the <div> tag is provided.
	30

	Wrote the code necessary to GET data from the tasks endpoint. Looped through the data returned by the API and appended each task to the existing unordered list.

The unordered list does not contain duplicate items that are not in the API results. (Even if the “Refresh Task List” button is clicked multiple times!)
	30

