

Digital Systems

8.1 Cybersecurity & AI

ROADMAP

START

Week 1:

Introduction & Systems Analysis

- Course Description
- Systems Thinking

Assignments #01 & 02

Week 2:

Digital Product Management

- Max Labs 1a & 1b
- Systems & Processes

Assignment #03

Week 3:

Introduction to Process Mapping

· Swim Lane Diagrams

Assignment #04

Week 4:

Data Modeling with Entity Relationship Diagrams

• ERD Diagrams

Assignment #05

Week 5:

Exam #1,

Digital Systems & Information

Systems: Part I & II

- Learn IT #1
- ERP & CRM

*Exam: check course site

Assignment #06

Week 9:

Exam #2 &

JavaScript Unit #1

- Parts I & II
- Hello World, Variables

Week 8:

Cybersecurity & Al

- Cybersecurity
- Protection Protocols
- · Artificial Intelligence

Week 7:

Information
Systems: Part IV
Platforms & Digital
Business Models

- SCM
- Platforms & Digital Models

Assignment #08

Week 6:

Information
Systems: Parts II & III

- CRM
- · Data Analytics

Assignment #07

*Exam: check course site

Week 10:

JavaScript Unit #2 Functions

- Values & Variables
- · Operator types
- Strings

Week 11:

JavaScript Unit #3 Logical Operators & Conditional Logic

- Logical Operators
- Conditional Types

Week 12:

JavaScript Unit #4 Loops

- Intro to Loops
- While and Do

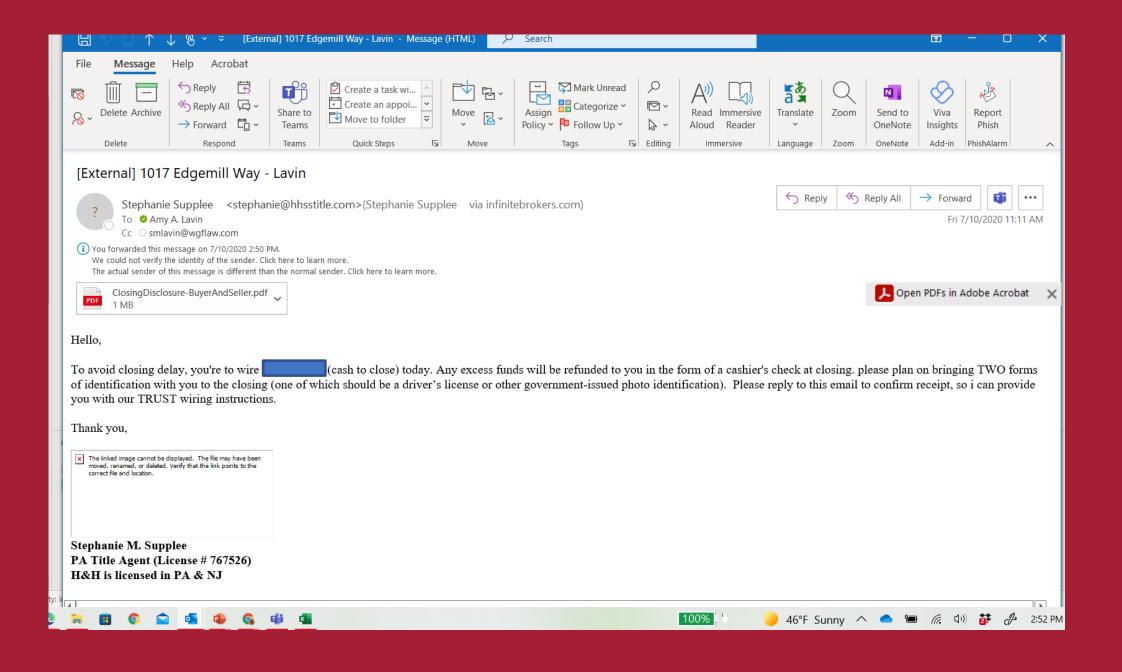
Week 13:

JavaScript Unit #4
Working with
Loops &
HTML & CSS Unit

- · Writing the code
- HTML & CSS Basics

Week 14 + 1:

HTML & CSS Unit (continued)


- HTML & CSS Basics
- Course Reflection

FINISH

Assignment #10

Assignments #11
*Final Exam: check course site

Assignment #9

Number	Stat	Source	
\$4.24 M	Average cost of a data breach	IBM/Ponemon Cost of a Data Breach Report 2021	
287	Average number of days to identify and contain a data breach	IBM/Ponemon Cost of a Data Breach Report 2021	
350,000	Number of new malware programs found per day	AV-TEST Institute	
18,000	Number of Solarwinds customers affected by supply chain breach	U.S. SEC filing, 12/14/20	
\$1.85 M	Average cost of remediating ransomware attack	Sophos State of Ransomware 2021 report	
74%	U.S. companies experiencing successful phishing attack in 2020	Proofpoint 2021 State of the Phish Report	

Cybercrime costs include damage and destruction of data, stolen money, lost productivity, theft of intellectual property, theft of personal and financial data, embezzlement, fraud, post-attack disruption to the normal course of business, forensic investigation, restoration and deletion of hacked data and systems, and reputational harm.

TOP CYBER THREATS

Ransomware

10 terabytes and more of data stolen monthly. More than 60% of affected organisations may have paid ransom demands

40%

Malware

Malware infections are increasing due to cryptojacking and Internet of Things malware.

Widespread cloud adoption provides attack opportunities for cybercriminals. In 2021, we observed 66 disclosures of zero-day vulnerabilities

Social Engineering threats

Social engineering and especially phishing remain a popular technique for attackers to conduct their malicious activities with new lures focusing on the Russia's invasion of Ukraine

Threats against data

They form a collection of threats that aim at gaining unauthorised access and disclosure, as well as manipulating data to interfere with the system helaviour.

Year on year increases as due to the increase in the amount of data produced

Threats against availability: Denial of Service

The DDoS landscape was affected by the Russia's invasion of Ukraine.

The numbers have risen and July 2022 was a peak with the largest ever recorded attack launched in Europe

Threats against availability: Internet threats

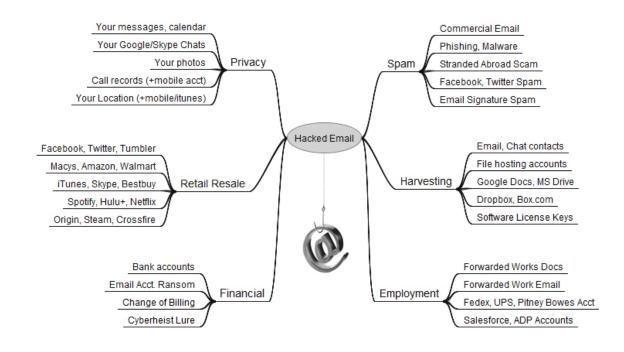
Destruction of internet infrastructure, outages and rerouting of internet traffic impact internet usage and free flow of information.

Disinformation – misinformation

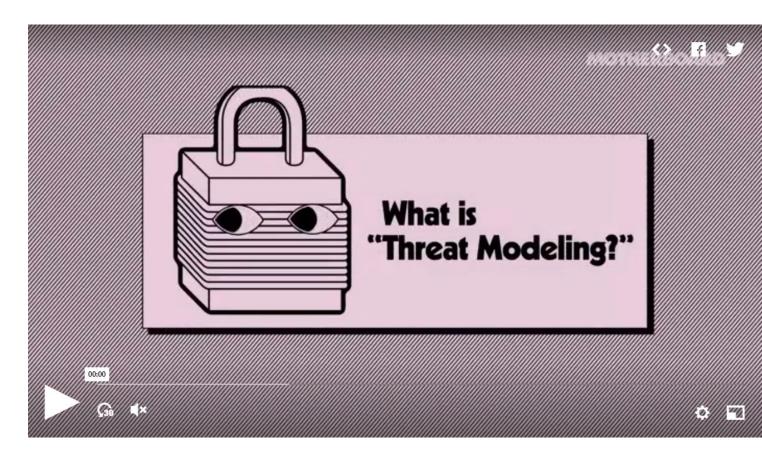
Al-enabled disinformation, deepfakes and disinformation-as-a-service are escalating with targets including elections, the green transition, covid-19 and the Russiar's invasion of Ukraine

Supply-chain attacks

Cybercriminals exhibit increasing capability and interest in supply chain attacks.


Third-party incidents account for 17% of the intrusions in 2021 compared to less than 1% in 2020

Source: ENISA Threat Landscape 2022 (July 2021 to July 2022)
Reproduction is authorised, provided the source is acknowledge

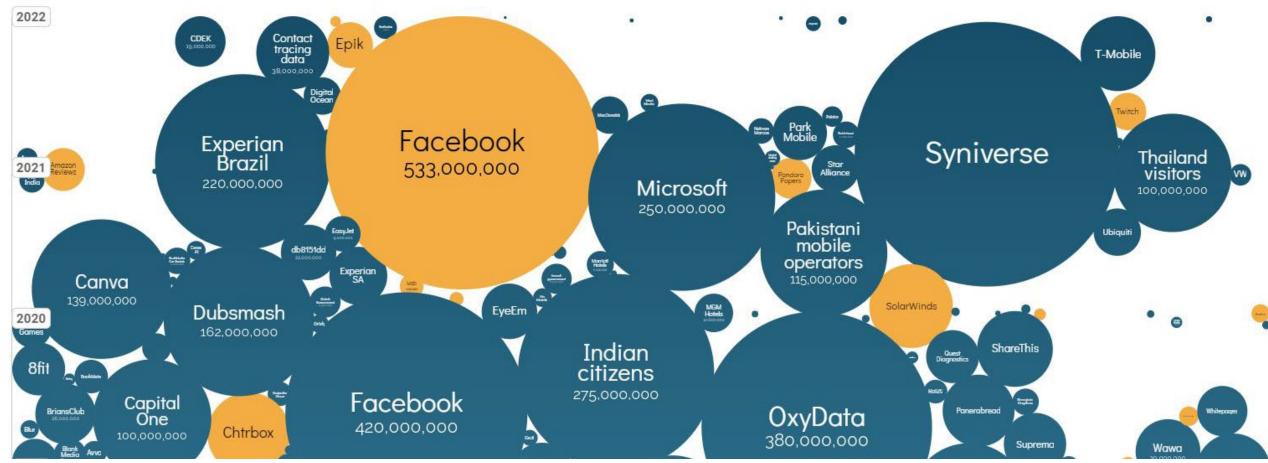


THE VALUE OF YOUR EMAIL ACCOUNT

Cybersecurity - Core Fundamentals

Consider these five questions:

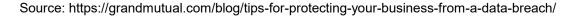
- 1. What do you want to protect?
- 2. Who do you want to protect it from?
- 3. How likely is it that you will need to protect it?
- 4. How bad are the consequences if you fail?
- 5. How much trouble are you willing to go through in order to try to prevent those consequences?



Source: https://www.vice.com/en_us/article/a37p94/what-is-threat-modeling

World's Biggest Data Breaches & Hacks

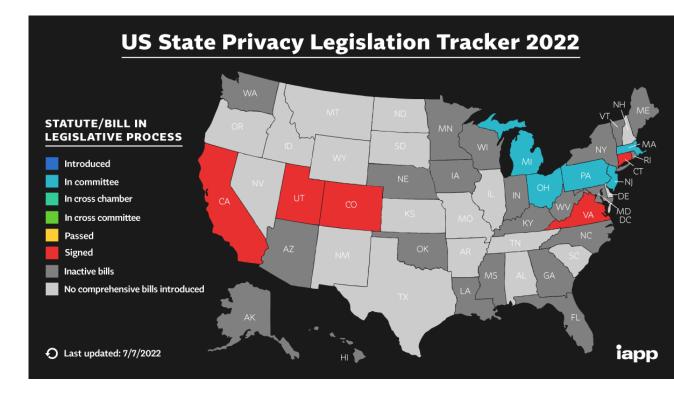
Source: https://www.oyster-ims.com/news/worlds-biggest-data-breaches-hacks


Corporate Hacks

Who was Hacked?

Why should you care?

- SSN
- Credit Cards
- Loans
- Identity


Regulations

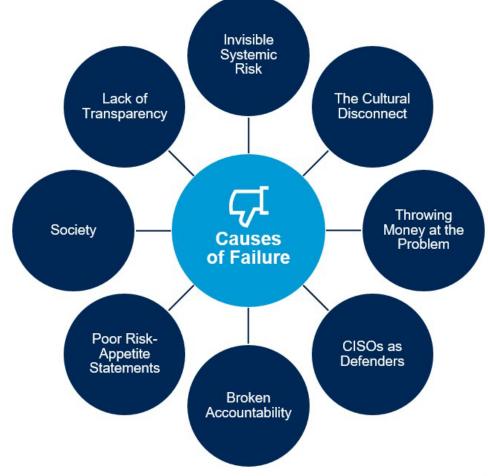
Privacy and Personal Data Protection

- California Consumer Privacy Act (CCPA)
- General Data Protection Regulation (GDPR).

Few Federal cybersecurity regulations

- 1996-Health Insurance Portability and Accountability Act (HIPAA)
- 1999-Gramm-Leach-Bliley Act
- 2002 Homeland Security Act, includes
 - Federal Information Security Management Act
- State-level momentum for comprehensive privacy bills

Source: https://iapp.org/media/images/resource_center/State_Comp_Privacy_Law_Map.png



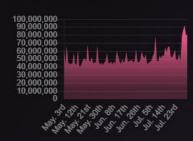
Strategic Planning

What does this all mean?

Define the eight reasons

Eight Related Causes of Security Failure

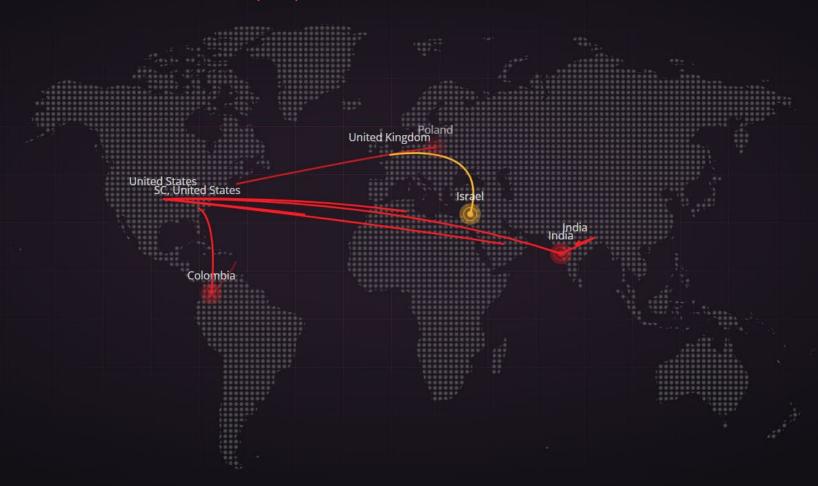
ID: 382968 © 2019 Gartner, Inc.


Source:https://www.gartner.com/document/3904673?ref=solrAll&refval=225616225&qid=0df98fbb9b466bc69199efad/

CHECK POINT THREATCLAUD

RECENT DAILY ATTACKS

ATTACKS O Current rate - 4 +


- Maze.TC.ti 12:52:38 India → India
- REP.TC.ajaojz
 12:52:38 United States → India
- REP.TC.ajaojz 12:52:38 United States → India
- REP.TC.ajaojz

 12:52:38 United States India
- Oracle Protection Violation
 12:52:37 United Kingdom → Israel
- REP.TC.ajaojz

 12:52:37 United States India
- Andromeda.TC.cuq
 12:52:37 SC, United States → Colombia

LIVE CYBER THREAT MAP

43,528,609 ATTACKS ON THIS DAY

DON'T WAIT TO BE ATTACKED PREVENTION STARTS NOW>

TOP TARGETED COUNTRIES

Highest rate of attacks per organization in the last day.

- Mongolia
- Nepal
- Georgia
- ★ Vietnam
- Taiwan

TOP TARGETED INDUSTRIES

Highest rate of attacks per organization in the last day.

- **Education**
- ₩ Healthcare

TOP MALWARE TYPES

Malware types with the highest global impact in the last day.

- infostealer
- * Adware
- Phishing

Case Study

Ransomware forces shutdown

- The incident led to the cancellation of 2,800 patient appointments at the NHS Trust.
- Took 3 days to resolve
- Hospitals are an appealing target for cyberwar...why?

Source: Getty Images/iStockphoto

https://www.zdnet.com/article/ransomware-blamed-for-cyber-attack-which-forced-hospitals-to-cancel-operations-and-shut-down-systems/

Vulnerability

What puts users at risk?

- Forms of malware?
- Who is impacted?
 - Are we safe?
- Can this problem be solved?
 - Combat strategies?

Source: https://www.itweb.co.za/content/KWEBb7yaExK7mRjO

Password Strength

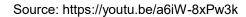
How secure are your passwords?

- Use numbers, letters, and symbols
- Make them as long as possible

Length of Password (Chars)	Only Numbers	Mixed Lower and Upper case alphabets	Mixed numbers, Lower and Upper case aplhabets	Mixed numbers, Lower and Upper case aplhabets , symbols
3	Instantly	Instantly	Instantly	Instantly
4	Instantly	Instantly	Instantly	Instantly
5	Instantly	Instantly	3 secs	10 secs
6	Instantly	8 secs	3 mins	13 mins
7	Instantly	5 mins	3 hours	17 hours
8	Instantly	3 hours	10 days	57 days
9	4 secs	4 days	153 days	12 years
10	40 secs	169 days	1 year	928 years
11	6 mins	16 years	106 years	71k years
12	1 hour	600 years	6k years	5m years
13	11 hours	21k years	108k years	
14	4 days	778k years	25m years	5bn years
15	46 days	28m years	1bn years	2tn years
16	1 year	1bn years	97bn years	193tn years
17	12 years	36bn years	6tn years	14qd years
18	126 years	1tn years	374tn vears	1gt years

Source: https://community.isc2.org/t5/Tech-Talk/How-long-does-it-take-to-crack-passwords/td-p/32546

Password Management


Password Basics

- Keep them in your head?
- Don't change them?
- Reuse them?

Password Management

- Consider a passphrase
 - Access a vault of your passwords
- Two-Factor Authentication

Protection

Considerations

- Antivirus
- Ad blocker
- Avoid dodgy plugins
- Back-up files
- Disable macros
- Don't just open attachments
- Firewall
- VPN

Source: https://www.pcmag.com/roundup/256703/the-best-antivirus-protection

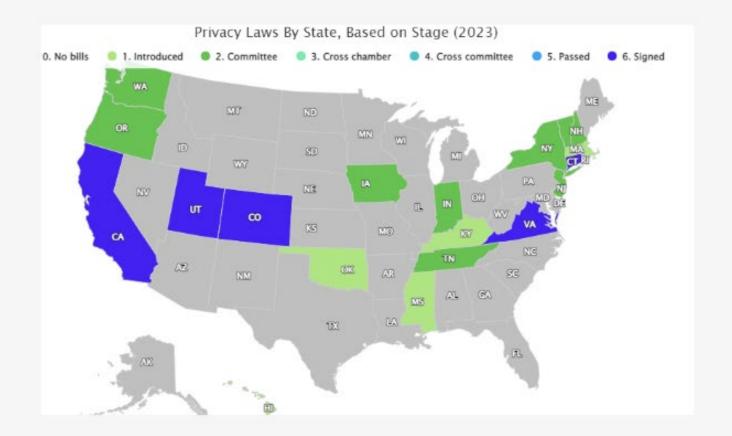
Phishing Scams

Case Study

- Google and Facebook targeted
- Lost \$100 million

Best Practices

- Careful of any suspicious emails
- Don't click on random links


Source: https://www.nouveau.co.uk/content-hub/avoidphishing/

DataPrivacy Laws

- Govern how companies handle the data of users & citizens
- Permission, access, ownership
- Varies by state

Cybersecurity

Hijacking your systems!

- Who borrows flash drives?
- How else do you share data?
- Vectors for Virus & Malware

Source: http://www.ommdvd.com/images/services/USB-Pile.jpg

What Is AI?

"A field which combines computer science and robust datsets, to enable problem solving"

- Human Approach:
 - Systems that think like humans
 - Systems that act like humans
- Ideal Approach:
 - Systems that think rationally
 - Systems that act rationally

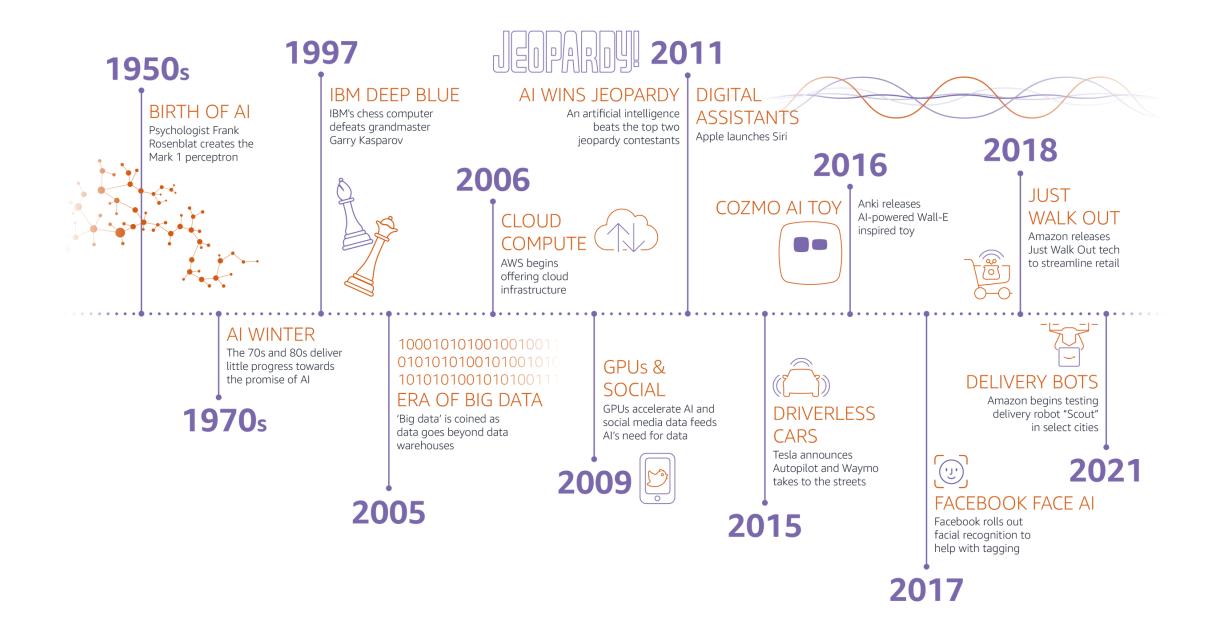
Al Applications

Speech Recognition

Uses Natural Language Processing to process human speech into a written format

Customer Service

Online virtual agents, frequently asked questions, message bots, voice assitants


Computer Vision

Enables computers & systems to derive meaningful information from digital images, videos, visual inputs and then take action

Recommendation Engines

Using past data, use algorithms to uncover trends and make recommendations

Personal Applications

1 E-COMMERCE

Personalized Assistants Fraud Prevention

LIFESTYLE

Autonomous Vehicles
Spam Filters
Facial Recognition
Recommendation Systems

EDUCATION

Content Curation
Personalized Learning

Business Applications

1 HUMAN RESOURCES

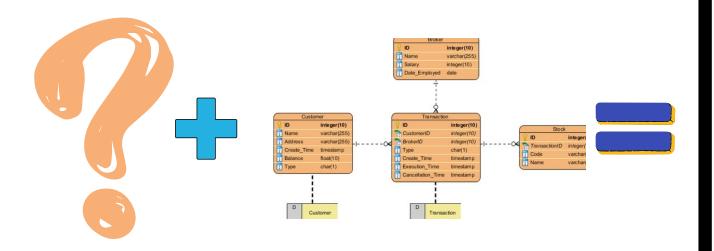
Hiring Candidate Pool Curation

MARKETING

Content Marketing
Targeted Ads & Personalization

FINANCE

Fraud Detection Stock Trading Loan Risks



ChatGPT

BUSINESS APPLICATIONS

- Customer Support & Service
- · Sales & Marketing
- Personalized Customer Recommendations
- Content Creation
- Employee Training and Support

How does it work?

How does ChatGPT Work?

ChatGPT is a deep learning model that works by processing and generating natural language text. It is based on a type of neural network called a transformer, which was developed by Google in 2017.

Here's a high-level overview of how ChatGPT works:

- Training: ChatGPT is trained on a large dataset of text, such as Wikipedia articles, books, and web pages. The training data is processed in such a way that the model learns to predict the likelihood of a word or phrase given the context of the text.
- Input: When you type a question or statement into ChatGPT, the text is processed by the model through a process called tokenization. Tokenization involves breaking the text down into smaller units called tokens, which represent individual words or subwords.
- Encoding: Once the text has been tokenized, it is fed into the model's encoder. The
 encoder uses multiple layers of neural networks to analyze the input text and generate a
 vector representation of its meaning.
- 4. Decoding: After the input text has been encoded, the model's decoder generates a response by predicting the likelihood of each token in the output sequence given the encoded input. The model then generates a sequence of tokens that are most likely to form a coherent response.
- Output: The output sequence is then decoded into natural language text and returned to the user.

ChatGPT's ability to generate natural language responses is made possible by the fact that it is trained on a large amount of text data, allowing it to learn the patterns and nuances of human language. This enables the model to generate responses that are contextually relevant, coherent, and often indist fa human.

G Regenerate response

DISCUSSION:

WHAT ARE THE ACADEMIC IMPLICATIONS OF CHATGPT?

WHAT ARE THE BUSINESS IMPLICATIONS OF CHATGPT?

More to Come

Prepare with Readings & Videos before our next class!!!