Project 4 – Creating a User Interface

PLEASE LIST YOUR NAMES
(You and your project partners. Same as in Project 3)
	NoName McHiggens

	Ima Test

	Sam Student

	Anne NotherWon

Expectations
· Instructor Guidance – Moderate
· Independent Effort – Moderate
· Originality – Low
· Teamwork – High
Be advised that every member of your project team should expect to receive the same grade on this project. Students are expected to help their project buddies and check each other’s work.
In this project, each student will submit the URL for their individual UI work.
[bookmark: _Hlk210771215]All students should use the same web service endpoint that they submitted for project 3.
Overview
In this project we are completing the HuntZilla game we started in Project 3. In this project, the focus is on creating a User Interface (UI) to allow a person to play the game, using the web service features hosted on AWS Lambda.
Summary of work done in class
Watch this video overview. (https://youtu.be/4JVkEGI903k ~ 6 minutes)
IMPORTANT NOTICE
Watch this important notice. (https://youtu.be/56F0rHd2OSg ~ 6 minutes)

Prompts (Previously Used)
	Follow all the patterns found in index.html and app.js.

When btnStartGame gets clicked, make an ajax call to the /startgame feature.

The /startgame feature needs to be sent the token found in localstorage as serialized URL encoded data (for example "token=...")

If that fails, put the JSONResponse error message into welcome_message styled as alert-danger.

	Can most of this logic be put into a startGameController function?

	On div game replace the "Introduction text goes here" with a div with an id of intro.

	Replace the "Three buttons go here" with a div with an id of q1, an input with an id of a1, and a button that says "Check"

	Ok now add q2 a2 and another Check button

	Ok now add q3 a3 and another Check button

	If startgame succeeds, navigate to the div called div-game. This game div should show the intro from the api response, q1, msg1, q2, msg2, q3, msg3 with a text input box and Save button below each.

Your next steps
1. Integrate the guess1, guess2, and guess3 features.
· https://youtu.be/kyO1eoSeXvI ~ 7 minutes
· https://youtu.be/K79Q6DEkDOU ~ 12 minutes

Related Prompts
	If the user clicks btnCheck1 then serialize a1 as url encoded data and make an ajax call to /guess1 place the responsetext from the api call in to msg1	

	If the responsetext is CORRECT style msg1 as text-success

	If the responsetext is not CORRECT style msg1 as text-danger

2. Improve the confirmation div (https://youtu.be/zYAN9I8p6Aw ~ 11 minutes)
3. Implement the endgame feature (https://youtu.be/yQXKvYRKJlQ ~ 13 minutes)
RELATED PROMPT
	Use all exisiting click events and controller functions as an example.
replace the existing btnEndGame click event
When btnEndGame is clicked, make a call to the endgame feature, sending the localstorage token as url encoded data. If the result is a success, 200, hide div-game and show div-confirm. Otherwise, put the text "You are not done! Keep Hunting" into the game_message div as an alert.

Finally, add a general purpose click event that clears the content and style of the game_message div when any button or nav link is clicked

4. Implement *your* web service. (https://youtu.be/BzA3UzopA3M ~ 5 minutes)
5. Test and watch your database. (https://youtu.be/1bzBF48qbBY ~ 6 minutes)
FYI – I recorded that video *before* I fixed up my confirmation div. Your confirmation div should have the big green check mark in it!
6. Implement the Leaderboard. You do this on your own. You can do it! Here’s a video of what it looks like when you are done. (https://youtu.be/OsedObFjsSs ~ 5 minutes)
FYI – I do expect you to have a leaderboard link in your navigation menu.
7. Test again. Be sure to test for functionality, correct HTML syntax, and A11y.
(https://youtu.be/h6hvs5Yv2t0 ~ 15 minutes)
Turn in your work
8. Each student should provide the URL for their work. It is OK for there to be some subtle variations in presentation, wording, and aesthetic.

However, defects in functionality, appearance, and accessibility are not ok. A defect (in functionality, appearance, and/or accessibility) in one student’s solution negatively affects the grade of every student on the team!

So, check your own work. Check the work of your project buddies. Help each other out.
CONTINUED

Student 1: Put your client-side code URL here:
	

Student 2: Put your client-side code URL here:
	

Student 3: Put your client-side code URL here:
	

Student 4: Put your client-side code URL here:
	

9. On canvas, turn in this completed Word document (one per team)
How will this project be graded?
Be advised that every member of the team will receive the same grade and that one student’s error can bring down the grade of the whole team. Students should help each other and check each other’s work.
Your solution must use the latest Bootstrap for layout, and the latest jQuery for document model manipulation. Student work that does not adhere to these requirements will be regarded as late, with no opportunity for resubmission or revision.
	Item
	Points

	All the interfaces refer to the same AWS Lambda endpoint. And no one is using Shafer’s endpoint URL. 20 points. All or nothing.
	20

	Point deductions are in 5-point increments unless otherwise noted.
Point deductions may occur for:
· Poor / Bad / Non-functional game play
· Unresolved accessibility errors (Check for critical errors and contrast errors using WAVE)
· Bad HTML (students should check with FireFox View Source)
· Missing features
	80

	TOTAL
	100

Please see the syllabus for the late policy.

