Prototyping: Reducing the Gap Between Expectation and Reality

MIS3506 – Fall 2025

Lavin

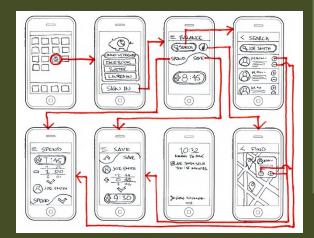
The Problem

Expectation vs. Reality

Ever launched a product that no one used?

The gap: what stakeholders imagine ≠ what users actually need

Prototyping is a business risk-reduction mechanism


What is Prototyping?

- Definition
 - Building simplified versions of a product to test before full development
 - Tests functionality, usability, and value early
- Fidelity Spectrum
 - Low-fidelity: sketches, wireframes, clickable mockups
 - High-fidelity: near-real interactivity, realistic data flows
- In Data/Analytics Context
 - Dashboard wireframes, report mockups, simulated drilldowns, fake-data interactions

Wireframe vs. Prototype — Key Differences

- Wireframe
 - Static blueprint or skeletal layout
 - Shows structure, hierarchy, content placement
 - No interactivity or functionality
 - Low-fidelity: grayscale, boxes, placeholder text
 - Purpose: Align on layout and information architecture
 - Tools: Paper, Balsamiq, Sketch, Figma (static frames)

- Prototype
 - Interactive simulation of the product
 - Shows user flows, transitions, behaviors
 - Clickable and testable
 - Can be low to high-fidelity
 - Purpose: Test usability, validate interactions, gather feedback
 - Tools: Figma, Adobe XD, InVision, Axure

How Figma Supports Prototyping

Figma: End-to-End Prototyping Platform

Core Prototyping Features:

Interactive hotspots: Link frames to simulate navigation and user flows

Transitions & animations: Add motion between screens

Overlays & modals: Simulate pop-ups, tooltips, dropdowns Conditional logic: Show/hide elements based on user actions Device preview: Test on mobile, tablet, desktop in real-time

Figma: Collaboration & Testing

Collaboration & Feedback:

Real-time co-editing with team members

Comment threads directly on prototype frames

Shareable prototype links with password protection

Version history to track iterations

Testing & Handoff:

User testing mode: Observe clicks, paths, time-on-task Developer handoff: Inspect CSS, export assets, view specs Why Figma: Free tier, browser-based, industry standard

Why Prototyping Matters— Part 1

1. Test Functionality Early

Identify navigation, filter, dataflow issues before coding

Example: Finance dashboard—users can't find cash-flow drilldown

2. Ensure Usability

Validate information hierarchy, clarity, interaction ease

Example: Sales ops report executives need only 3 KPIs above fold

3. Gather Targeted Feedback

Make abstract requirements concrete; align expectations

Example: 'Real-time' becomes 'daily refresh is fine' after walkthrough

Why Prototyping Matters— Part 2

4. Increase Development Assertiveness

Higher confidence = less rework

Example: Two prototype rounds → engineering hits acceptance on sprint 1

5. Reduce Cost and Cycle Time

Catch misfits early; avoid expensive fixes

Example: Repositioning 3 charts takes minutes in prototype vs. redoing code

6. Improve Intuitiveness and Tool Fluidity

Test whether flows feel natural; ensure filters aren't overwhelming

Example: Marketing dashboard—prototype reveals need for autosuggest

Why Prototyping Matters— Part 3

Key Insights:

- Prototyping narrows the expectation—reality gap
- Increases perceived value of data teams
- Validates fundamentals before development begins

7. Enable Collaborative Creation

- Cross-team co-design; self-service analytics culture
- Example: Ops and Sales co-create shared pipeline view in prototype

Prototyping vs. Visual Library

- Visual Library
 - Reusable kit: charts, cards, filter patterns, design tokens
 - Speeds up consistent prototypes
- Prototyping
 - End-to-end process of bringing ideas to life for validation
- Relationship
 - Visual Library accelerates prototyping
 - Prototyping validates the right solution
- For Business Leaders: Invest in library; insist on prototyping phase

Success Strategy 1 — Start Right

1. Start with Outcomes and Questions

- What decisions will this enable? What questions must it answer?
- Who is the primary user?
- Write 3 'jobs to be done' before drawing anything

2. Choose the Right Fidelity

- Round 1: Low-fi to align on structure (paper, whiteboard)
- Round 2–3: Mid/high-fi clickable flows for key tasks
- Use sample data; clearly label 'sample data'

Success Strategy 2 — Test Smart

3. Prototype the Riskiest Assumptions First

- Examples: 'Users understand cohort analysis,' 'Executives will explore'
- Design small experiments: A/B layouts, task completion tests

4. Make Feedback Specific and Structured

- Script 5–7 realistic tasks
- Use rubric: clarity (A–F), findability, decision confidence, timeon-task

5. Validate Language and Mental Models

- Labels, filters, metrics must match user vocabulary
- Co-create metric dictionary in prototype (hover help, glossary)

Success Strategy 3 — Build for Reality

Instrument Your Prototype (if possible) Instrument Design for Performance Perceptions Design Align on Scope and Acceptance Criteria Align

Success Strategy 4 — Scale and Communicate

9. Reuse with a Visual Library

 Standardize chart types, spacing, typography, interaction patterns

Establish 'golden patterns' for common flows

10. Communicate the Iteration Plan

• Set expectations: 2—3 prototype rounds; time-boxed sessions

 Have a clear decision-maker to avoid design-by-committee

Facilitation Tips:

 Keep reviews to 30–45 mins; start with user/job; end with decisions

Discussion Questions

- For Each Scenario:
 - What assumption is riskiest?
 - What's the minimal prototype experiment to test it?
 - How would you structure user feedback sessions?

Key Takeaways

- 'Don't Skip the Prototyping Phase'
 - Prototyping occurs between understanding needs and development
 - More than one concept can be proposed
 - No harm if prototype is rejected or changed—that's the point!
 - Corrections happen before development begins
- Bottom Line:
 - Reduces expectation—reality gap; increases probability of success
 - Achieves this without spending resources on full development

Prototype Checklist

- Before You Build:
 - □ Problem framing: user, decisions, top 3 questions
 - ☐ Fidelity choice aligned to phase
 - ☐ Task script for testing (5–7 tasks)
 - ☐ Metric glossary and labeling review
 - ☐ Empty/loading/error states included
 - □ Instrumentation or observation plan
 - \square Acceptance criteria drafted and signed off
 - □ Reuse components from a visual library

Questions & Discussion

- Reflect:
 - Do you currently develop prototypes in your projects?
 - Or do you go straight to final product development?
 - What's one prototype experiment you could run this week?