
Prototyping: Reducing 
the Gap Between 
Expectation and Reality
MIS3506 – Fall 2025

Lavin



The Problem

Expectation 
vs. Reality

Ever launched 
a product that 
no one used?

The gap: what 
stakeholders 

imagine ≠ 
what users 

actually need

Prototyping is 
a business 

risk-reduction 
mechanism



What is 
Prototyping?

 Definition
 Building simplified versions of a product to test 

before full development
 Tests functionality, usability, and value early

 Fidelity Spectrum
 Low-fidelity: sketches, wireframes, clickable 

mockups
 High-fidelity: near-real interactivity, realistic data 

flows

 In Data/Analytics Context
 Dashboard wireframes, report mockups, simulated 

drilldowns, fake-data interactions



Wireframe vs. 
Prototype —
Key 
Differences

 Wireframe
 Static blueprint or skeletal 

layout
 Shows structure, hierarchy, 

content placement
 No interactivity or 

functionality
 Low-fidelity: grayscale, 

boxes, placeholder text
 Purpose: Align on layout 

and information 
architecture

 Tools: Paper, Balsamiq, 
Sketch, Figma (static 
frames)

 Prototype
 Interactive simulation of 

the product
 Shows user flows, 

transitions, behaviors
 Clickable and testable
 Can be low to high-fidelity
 Purpose: Test usability, 

validate interactions, 
gather feedback

 Tools: Figma, Adobe XD, 
InVision, Axure



How Figma 
Supports 
Prototyping

Core Prototyping Features:
Interactive 

hotspots: Link 
frames to simulate 
navigation and user 

flows

Transitions & 
animations: Add 
motion between 

screens

Overlays & modals: 
Simulate pop-ups, 

tooltips, 
dropdowns

Conditional logic: 
Show/hide 

elements based on 
user actions

Device preview: 
Test on mobile, 

tablet, desktop in 
real-time

Figma: End-to-End 
Prototyping Platform



Figma: Collaboration & Testing

 Collaboration & Feedback:
 Real-time co-editing with team members
 Comment threads directly on prototype frames
 Shareable prototype links with password protection
 Version history to track iterations

 Testing & Handoff:
 User testing mode: Observe clicks, paths, time-on-task
 Developer handoff: Inspect CSS, export assets, view specs
 Why Figma: Free tier, browser-based, industry standard



Why 
Prototyping 
Matters —
Part 1

1. Test Functionality 
Early

Identify navigation, filter, data-
flow issues before coding

Example: Finance dashboard—
users can't find cash-flow 
drilldown

2. Ensure Usability
Validate information hierarchy, 
clarity, interaction ease

Example: Sales ops report—
executives need only 3 KPIs 
above fold

3. Gather Targeted 
Feedback

Make abstract requirements 
concrete; align expectations

Example: 'Real-time' becomes 
'daily refresh is fine' after 
walkthrough



Why 
Prototyping 
Matters —
Part 2

4. Increase 
Development 
Assertiveness

Higher confidence = less 
rework

Example: Two prototype 
rounds → engineering hits 
acceptance on sprint 1

5. Reduce Cost and 
Cycle Time

Catch misfits early; avoid 
expensive fixes

Example: Repositioning 3 
charts takes minutes in 
prototype vs. redoing code

6. Improve 
Intuitiveness and Tool 
Fluidity

Test whether flows feel 
natural; ensure filters aren't 
overwhelming

Example: Marketing 
dashboard—prototype 
reveals need for autosuggest



Why 
Prototyping 
Matters —
Part 3

7. Enable 
Collaborative 
Creation
• Cross-team co-design; 

self-service analytics 
culture

• Example: Ops and Sales 
co-create shared pipeline 
view in prototype

Key Insights:
• Prototyping narrows the 

expectation–reality gap
• Increases perceived value 

of data teams
• Validates fundamentals 

before development 
begins



Prototyping 
vs. Visual 
Library

 Visual Library
 Reusable kit: charts, cards, filter patterns, design tokens
 Speeds up consistent prototypes

 Prototyping
 End-to-end process of bringing ideas to life for validation

 Relationship
 Visual Library accelerates prototyping
 Prototyping validates the right solution

 For Business Leaders: Invest in library; insist on prototyping phase



Success 
Strategy 1 —
Start Right

• What decisions will this enable? What questions 
must it answer?

• Who is the primary user?
• Write 3 'jobs to be done' before drawing anything

1. Start with Outcomes and Questions

• Round 1: Low-fi to align on structure (paper, 
whiteboard)

• Round 2–3: Mid/high-fi clickable flows for key tasks
• Use sample data; clearly label 'sample data'

2. Choose the Right Fidelity



Success 
Strategy 2 —
Test Smart

3. Prototype the Riskiest Assumptions First
• Examples: 'Users understand cohort analysis,' 'Executives will 

explore'
• Design small experiments: A/B layouts, task completion tests

4. Make Feedback Specific and Structured
• Script 5–7 realistic tasks
• Use rubric: clarity (A–F), findability, decision confidence, time-

on-task

5. Validate Language and Mental Models
• Labels, filters, metrics must match user vocabulary
• Co-create metric dictionary in prototype (hover help, glossary)



Success 
Strategy 3 —
Build for 
Reality

Instrument Your Prototype (if possible)
• Track clicks/paths to see drop-offs and confusion pointsInstrument

Design for Performance Perceptions
• Simulate loading states, empty states
• Prototype default states to prevent 'blank dashboards'

Design

Align on Scope and Acceptance Criteria
• Convert validated prototype into user stories
• Freeze scope with 'prototype sign-off' before engineering

Align 



Success 
Strategy 4 —
Scale and 
Communicate

• Standardize chart types, spacing, 
typography, interaction patterns

• Establish 'golden patterns' for common 
flows

9. Reuse with a 
Visual Library

• Set expectations: 2–3 prototype 
rounds; time-boxed sessions

• Have a clear decision-maker to avoid 
design-by-committee

10. 
Communicate 
the Iteration 

Plan

• Keep reviews to 30–45 mins; start with 
user/job; end with decisions

Facilitation 
Tips:



Discussion 
Questions

 For Each Scenario:
 What assumption is riskiest?
 What's the minimal prototype experiment to test it?
 How would you structure user feedback sessions?



Key Takeaways

 'Don't Skip the Prototyping Phase'
 Prototyping occurs between understanding needs and development
 More than one concept can be proposed
 No harm if prototype is rejected or changed—that's the point!
 Corrections happen before development begins

 Bottom Line:
 Reduces expectation–reality gap; increases probability of success
 Achieves this without spending resources on full development



Prototype 
Checklist

 Before You Build:
 ☐ Problem framing: user, decisions, top 3 questions
 ☐ Fidelity choice aligned to phase
 ☐Task script for testing (5–7 tasks)
 ☐Metric glossary and labeling review
 ☐ Empty/loading/error states included
 ☐ Instrumentation or observation plan
 ☐Acceptance criteria drafted and signed off
 ☐ Reuse components from a visual library



Questions & 
Discussion

 Reflect:
 Do you currently develop prototypes in your projects?
 Or do you go straight to final product development?
 What's one prototype experiment you could run this week?


	Prototyping: Reducing the Gap Between Expectation and Reality
	The Problem
	What is Prototyping?
	Wireframe vs. Prototype — Key Differences
	How Figma Supports Prototyping
	Figma: Collaboration & Testing
	Why Prototyping Matters — �Part 1
	Why Prototyping Matters — �Part 2
	Why Prototyping Matters — �Part 3
	Prototyping vs. Visual Library
	Success Strategy 1 — Start Right
	Success Strategy 2 — Test Smart
	Success Strategy 3 — Build for Reality
	Success Strategy 4 — Scale and Communicate
	Discussion Questions
	Key Takeaways
	Prototype Checklist
	Questions & Discussion

