
In Class Activity 4 

Text classification with Naïve Bayesian Model 
In today’s activity we are going to classify some text using a naïve model.  You’ll observe that the model is 
called “naïve” because it is looking at word counts and just word counts. The model does not consider 
the proximity of one word to another, the context of the words, or the sequence in which the words are 
used. 

To make our process work, our text will need to be broken down into a collection of units (called tokens) 
and those tokens are arranged in a pattern called a vector. This is a crude example of what happens 
when LLM service (like ChatGPT) receives a prompt from a user such as yourself. 

Our imaginary scenario is that of an automated service request system. Requests for service and 
assistance come in as “trouble tickets”.  Our script will build a Naïve Bayesian model and then use that 
model to route the request to the correct “expert”.  You can imagine that there is one expert for each 
department. 

Here are the departments in our imaginary organization. 

1. accounting 
2. customer support 
3. human resources 
4. information technology 
5. marketing 
6. operations 
7. sales 

 
A note to students! In the text that follows, we will look at the Python libraries we will use in today’s 
script. 
 
Your dear old instructor is not concerned with your ability to memorize and recall the exact names of 
Python libraries.   
 
However, looking at the libraries used *is* a nice way to understand what we are trying to do in the 
script at a high level. 
 

 

Our script will use these libraries: 

1. pandas – this library for handling data in DataFrame format.  You can think of a data frame as 
something like a database table, or an Excel sheet.  It has rows and columns.  But, the DataFrame 
data format has lots of handy features built into it to make writing code easier. 

2. train_test_split – this library is for splitting data into training and testing sets. Supervised Machine 
Learning models usually depend on breaking the data into two sets.  The first set is used to build 
the model … this is the “training” set.  The other set is used to validate the model.   



Validation of the model is important as it is the only way that we can approximate how good the 
model will be in the future when it is working with new data. 

3. TfidfVectorizer – this library is for converting text data into TF-IDF feature vectors.  
 
What’s that you ask? It’s just a fancy way to look at the “Term Frequency’ (the number of times a 
word appears in a document) relative to how often the word appears in all the documents 
together.  The combination of all the documents together is called “the corpus”. 

o  Term Frequency (TF): Term frequency measures how often a term (word) appears in a 
document. It's calculated as the number of times a term appears in a document divided by 
the total number of terms in the document.  This is a measure of frequence within a single 
document. 

o Inverse Document Frequency (IDF): Inverse document frequency measures the 
importance of a term in the entire corpus.  It's calculated as the logarithm of the total 
number of documents in the corpus divided by the number of documents containing the 
term.  Why use logarithms?  Because statisticians are a wacky bunch, that’s why!  
 
Seriously… when the decimal values less than 1 but greater than 0 get really, really close to 
zero, it is often handy to transform them in this way.  It makes comparison of these tiny 
values easier. 

o TF-IDF Calculation: TF-IDF is computed by multiplying the term frequency (TF) of a term by 
its inverse document frequency (IDF). This results in a higher TF-IDF score for terms that are 
frequent in a document but rare in the entire corpus, indicating their importance in 
distinguishing the document. 

o Vector – We just put all the terms together in a sequence, organized from most frequent to 
least frequent…. And we call that a vector.   

o I am personally glad that I did not have to figure all that out for myself.  You should be 
too! 
 

4. MultinomialNB – this library is for implementing the Naive Bayes classifier.  The prior step got all 
my data ready, basically transforming each document into a vector with numeric values. This step 
builds the model necessary to look at each vector and categorize it correctly.  The software first 
builds the model (with the training data set) and then attempts to determine its accuracy (with the 
validation data set). 

5. classification_report – This is for evaluating the classifier's performance.  We want to know how 
our model did with the training set.  Here’s the output we see: 

o Precision is the ratio of correctly predicted positive observations to the total predicted 
positive observations. In other words, it measures the accuracy of positive predictions. It is 
calculated as: 

 
 



o Recall is the ratio of correctly predicted positive observations to all the observations in the 
actual class. In other words, it measures the completeness or sensitivity of the classifier. It 
is calculated as: 

 
 

o The F1-score is the harmonic mean of precision and recall. It provides a single metric that 
balances both precision and recall. It is calculated as: 

 
The F1-score combines precision and recall into a single metric that balances both 
metrics. It provides a way to assess the overall performance of a classifier, considering 
both false positives and false negatives. 
 
If the F1-score is close to 1, it indicates high precision and high recall, meaning the 
classifier is performing well in terms of both minimizing false positives and false negatives. 
 
If the F1-score is close to 0, it indicates poor performance in terms of either precision or 
recall, or both.  
 
If the F1-score is closer to 0.5, it suggests that the classifier is achieving a balance between 
precision and recall.  It is ok, but there is still room for improvement! 
 
We multiply by two in this equation because we want to end up with a scale that ranges 
between 0 and 1, not zero and 0.50. 
 

o Support is the number of actual occurrences of the class in the specified dataset. It 
represents the number of samples in each class.  Support is just a count of occurrences.  

These metrics provide insights into how well a classifier is performing for each individual class. 

6. matplotlib.pyplot – This library is just for visualization.  We’ll use it to make some bar charts that 
suggest what our vectors look like for each department. 

Instructions 
1. Students should download the activity4.zip file and unzip it into their mis3536workspace. (There 

are two files, the Jupyter notebook, and the data file.) 

2. Explore the data source (it’s a CSV file this time!) Be careful not to edit it. 

a. Based on what you see here, what data cleaning has been done? 

b. Based on what you see here, does this look like we are headed towards a supervised model 
or an unsupervised model? Why? 

  



 

3. Today, we are going to run the Jupyter notebook one cell at a time. 

a. The first cell -- This code essentially loads data, prepares it, splits it into training and testing 
sets, converts text data into TF-IDF features, trains a Naive Bayes classifier, makes 
predictions, and evaluates the classifier's performance. 

b. The second cell -- This block of code generates a series of horizontal bar plots, each 
showing the top 10 most important features for a specific department/class, along with 
their corresponding coefficients. These visualizations help in understanding which words 
are most influential in predicting each department/class in the classifier. 

c. The third cell -- This code allows the user to input a problem description, predicts the top 
two departments likely to handle the problem, and prints the predictions along with their 
probabilities. 

4. Using the third cell in the script, experiment with the model we just built. 

5. DISCUSS: There’s *a lot* going on here.  What are your chief takeaways?  

6. Using the bar plots as a guide, craft a *good* example of your own. Screen shot it, and upload it to 
the corresponding Canvas assignment. 

7. DISCUSS: Consider these two questions: 
 
Question 1: What are the flaws in this classification mechanism? 
 

Question 2: Based on what we know about our classification model, what could we do to improve 
it? 
 


