
In Class Activity 4

Text classification with Naïve Bayesian Model
In today’s activity we are going to classify some text using a naïve model. You’ll observe that the model is
called “naïve” because it is looking at word counts and just word counts. The model does not consider
the proximity of one word to another, the context of the words, or the sequence in which the words are
used.

To make our process work, our text will need to be broken down into a collection of units (called tokens)
and those tokens are arranged in a pattern called a vector. This is a crude example of what happens
when LLM service (like ChatGPT) receives a prompt from a user such as yourself.

Our imaginary scenario is that of an automated service request system. Requests for service and
assistance come in as “trouble tickets”. Our script will build a Naïve Bayesian model and then use that
model to route the request to the correct “expert”. You can imagine that there is one expert for each
department.

Here are the departments in our imaginary organization.

1. accounting
2. customer support
3. human resources
4. information technology
5. marketing
6. operations
7. sales

A note to students! In the text that follows, we will look at the Python libraries we will use in today’s
script.

Your dear old instructor is not concerned with your ability to memorize and recall the exact names of
Python libraries.

However, looking at the libraries used *is* a nice way to understand what we are trying to do in the
script at a high level.

Our script will use these libraries:

1. pandas – this library for handling data in DataFrame format. You can think of a data frame as
something like a database table, or an Excel sheet. It has rows and columns. But, the DataFrame
data format has lots of handy features built into it to make writing code easier.

2. train_test_split – this library is for splitting data into training and testing sets. Supervised Machine
Learning models usually depend on breaking the data into two sets. The first set is used to build
the model … this is the “training” set. The other set is used to validate the model.

Validation of the model is important as it is the only way that we can approximate how good the
model will be in the future when it is working with new data.

3. TfidfVectorizer – this library is for converting text data into TF-IDF feature vectors.

What’s that you ask? It’s just a fancy way to look at the “Term Frequency’ (the number of times a
word appears in a document) relative to how often the word appears in all the documents
together. The combination of all the documents together is called “the corpus”.

o Term Frequency (TF): Term frequency measures how often a term (word) appears in a
document. It's calculated as the number of times a term appears in a document divided by
the total number of terms in the document. This is a measure of frequence within a single
document.

o Inverse Document Frequency (IDF): Inverse document frequency measures the
importance of a term in the entire corpus. It's calculated as the logarithm of the total
number of documents in the corpus divided by the number of documents containing the
term. Why use logarithms? Because statisticians are a wacky bunch, that’s why!

Seriously… when the decimal values less than 1 but greater than 0 get really, really close to
zero, it is often handy to transform them in this way. It makes comparison of these tiny
values easier.

o TF-IDF Calculation: TF-IDF is computed by multiplying the term frequency (TF) of a term by
its inverse document frequency (IDF). This results in a higher TF-IDF score for terms that are
frequent in a document but rare in the entire corpus, indicating their importance in
distinguishing the document.

o Vector – We just put all the terms together in a sequence, organized from most frequent to
least frequent…. And we call that a vector.

o I am personally glad that I did not have to figure all that out for myself. You should be
too!

4. MultinomialNB – this library is for implementing the Naive Bayes classifier. The prior step got all
my data ready, basically transforming each document into a vector with numeric values. This step
builds the model necessary to look at each vector and categorize it correctly. The software first
builds the model (with the training data set) and then attempts to determine its accuracy (with the
validation data set).

5. classification_report – This is for evaluating the classifier's performance. We want to know how
our model did with the training set. Here’s the output we see:

o Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations. In other words, it measures the accuracy of positive predictions. It is
calculated as:

o Recall is the ratio of correctly predicted positive observations to all the observations in the
actual class. In other words, it measures the completeness or sensitivity of the classifier. It
is calculated as:

o The F1-score is the harmonic mean of precision and recall. It provides a single metric that
balances both precision and recall. It is calculated as:

The F1-score combines precision and recall into a single metric that balances both
metrics. It provides a way to assess the overall performance of a classifier, considering
both false positives and false negatives.

If the F1-score is close to 1, it indicates high precision and high recall, meaning the
classifier is performing well in terms of both minimizing false positives and false negatives.

If the F1-score is close to 0, it indicates poor performance in terms of either precision or
recall, or both.

If the F1-score is closer to 0.5, it suggests that the classifier is achieving a balance between
precision and recall. It is ok, but there is still room for improvement!

We multiply by two in this equation because we want to end up with a scale that ranges
between 0 and 1, not zero and 0.50.

o Support is the number of actual occurrences of the class in the specified dataset. It
represents the number of samples in each class. Support is just a count of occurrences.

These metrics provide insights into how well a classifier is performing for each individual class.

6. matplotlib.pyplot – This library is just for visualization. We’ll use it to make some bar charts that
suggest what our vectors look like for each department.

Instructions
1. Students should download the activity4.zip file and unzip it into their mis3536workspace. (There

are two files, the Jupyter notebook, and the data file.)

2. Explore the data source (it’s a CSV file this time!) Be careful not to edit it.

a. Based on what you see here, what data cleaning has been done?

b. Based on what you see here, does this look like we are headed towards a supervised model
or an unsupervised model? Why?

3. Today, we are going to run the Jupyter notebook one cell at a time.

a. The first cell -- This code essentially loads data, prepares it, splits it into training and testing
sets, converts text data into TF-IDF features, trains a Naive Bayes classifier, makes
predictions, and evaluates the classifier's performance.

b. The second cell -- This block of code generates a series of horizontal bar plots, each
showing the top 10 most important features for a specific department/class, along with
their corresponding coefficients. These visualizations help in understanding which words
are most influential in predicting each department/class in the classifier.

c. The third cell -- This code allows the user to input a problem description, predicts the top
two departments likely to handle the problem, and prints the predictions along with their
probabilities.

4. Using the third cell in the script, experiment with the model we just built.

5. DISCUSS: There’s *a lot* going on here. What are your chief takeaways?

6. Using the bar plots as a guide, craft a *good* example of your own. Screen shot it, and upload it to
the corresponding Canvas assignment.

7. DISCUSS: Consider these two questions:

Question 1: What are the flaws in this classification mechanism?

Question 2: Based on what we know about our classification model, what could we do to improve
it?

