Managing Enterprise Cybersecurity MIS 4596

Unit\#8

Agenda

- Some useful Linux commands
- Symmetric cryptography
- Block versus Stream ciphers
- Block ciphers
- Block ciphers mode of operations
- Hashes

Some useful Linux commands

File Commands	System Info
ls - directory listing	date - show the current date and time
ls -al - formatted listing with hidden files	cal - show this month's calendar
cd dir - change directory to dir	uptime - show current uptime
cd - change to home	w - display who is online
pwd - show current directory	whoami - who you are logged in as
mkdir dir - create a directory dir	finger user - display information about user
rm file-delete file	uname -a - show kernel information
rm -r dir-delete directory dir	cat /proc/cpuinfo - cpu information
rm -f file - force remove file	cat /proc/meminfo-memory information
rm -rf dir-force remove directory dir*	man command - show the manual for command
cp file1 file2-copy file1 to file2	df - show disk usage
cp -r dir1 dir2 - copy dir1 to dir2; create dir2 if it doesn't exist	du - show directory space usage free - show memory and swap usage
mv file1 file2 - rename or move file1 to file2	whereis app - show possible locations of $a p p$
if file2 is an existing directory, moves file1 into	which app - show which app will be run by default
directory file2	Shortcuts
ln -s file link - create symbolic link link to file	Ctrl+C - halts the current command
touch file - create or update file	$\mathbf{C t r l + Z}$ - stops the current command, resume with
cat > file - places standard input into file	fg in the foreground or bg in the background
more file - output the contents of file	Ctrl+D - log out of current session, similar to exit
head file - output the first 10 lines of file	$\mathrm{Ctrl}+\mathrm{W}$ - erases one word in the current line
tail file - output the last 10 lines of file	Ctrl+U - erases the whole line
tail -f file-output the contents of file as it grows, starting with the last 10 lines	Ctrl+R - type to bring up a recent command
	exit - log out of current session

Agenda

\checkmark Some useful Linux commands

- Symmetric cryptography
- Block versus Stream ciphers
- Block ciphers
- Block ciphers mode of operations
- Hashes

Symmetric and asymmetric algorithms

...both are 2-way functions that support encryption \& decryption

- Symmetric cryptography
- Use a copied pair of symmetric (identical) secret keys
- The sender and the receive use the same key for encryption and decryption functions
- Asymmetric cryptography
- Also know as "public key cryptography"
- Use different ("asymmetric") keys for encryption and decryption
- One is called the "private key" and the other is the "public key"

A strong cipher contains

2 main attributes

1. Confusion: usually carried out through substitution
2. Diffusion: Usually carried out through transposition

Symmetric cryptography

Strengths:

- Much faster (less computationally intensive) than asymmetric systems.
- Hard to break if using a large key size.

Weaknesses:

- Requires a secure mechanism to deliver keys properly.
- Each pair of users needs a unique key, so as the number of individuals increases, so does the number of keys, possibly making key management overwhelming.
- Provides confidentiality but not authenticity or nonrepudiation.

Two types: Stream and Block Ciphers

- Stream Ciphers treat the message a stream of bits and performs mathematical functions on each bit individually
- Block Ciphers divide a message into blocks of bits and transforms the blocks one at a time

Block Ciphers versus Stream Ciphers

Stream ciphers work on a single bit at a time:

0	1	1	1	0	0	1	1	Plaintext
XOR								
1	0	0	1	0	1	0	1	Key
			1	0	0	1	1	0
1	1	1						

Block Ciphers versus Stream Ciphers

In contrast, block ciphers encrypt a block of bits at a time
In this example, each Substitution Box (S-box) contains a lookup table used by the algorithm as instructions on
how the bits are substituted

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	-6011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

Encryption table
Decryption table

Encrypted message (ciphertext)—B9

Block Cyphers ("Cipher")

- Message is divided into blocks of bits
- Blocks are put through encryption functions 1 block at a time

Suppose you are encrypting a 648-bit long message to send to your mother using a block cypher that uses 12 bits

- Your message would be chopped up into 54 blocks each 12 bits long
- Each block, in turn, would be run through a series of encryption functions
(substitution and transposition)
- Ending up with 54 blocks of ciphertext

$1^{\text {st }}$ block of

ciphertext \quad\begin{tabular}{c}

$2^{\text {nd }}$| block of |
| :---: |
| ciphertext |

$3^{\text {rd }}$| block of |
| :---: |
| ciphertext |

\end{tabular}

Note: Block ciphers typically use $64,128,512$ bits at a time

Block Ciphers

- Message is divided into blocks of bits
- Blocks are put through mathematical functions 1 block at a time

You send the message to your mother. She uses the same block cipher and key (symmetric) to decipher the message

- The 54 ciphertext blocks go back through the algorithm in the reverse sequence
- Resulting in your original plaintext message your message

Did you know that Dave joined the circus?

Message

$1^{\text {st }}$ block of		
ciphertext	$2^{\text {nd }}$ block of	$3^{\text {rd }}$ block of
ciphertext	ciphertext	

Modern Block Ciphers

- Use block sizes of 128 -bits or greater
- Examples of Block Ciphers that can be used are:
- AES (NIST's 2001 Advanced Encryption Standard - originally known as Rijndael)
- 128 bit block size, but 3 different key lengths: 128, 192, and 256 bits
- Blowfish
- Twofish
- Serpent
- Do not use these examples of block ciphers which have a 56 bit key length, which is too small to provide secure encryption:
- DES (Data Encryption Standard)
- 3DES

Practical Cryptanalysis

DES Cracker:

- A DES key search machine
- Contains 1,536 chips
- Cost: \$250,000
- Searches 88 billion keys per second
- Won RSA Laboratory's "DES Challenge II-2" by successfully finding a DES key in 56 hours

Agenda

\checkmark Kali Linux workaround - Alternative way to bring up a terminal window
\checkmark Some useful Linux commands
\checkmark Symmetric cryptography
\checkmark Block versus Stream ciphers
\checkmark Block ciphers

- Block ciphers mode of operations
- Hashes

Block cipher's "mode of operation"

5 modes of operation are used to tailor them for use in different applications:

1. ECB - Electronic Code Book mode
2. CBC - Cipher Block Chaining mode
3. CFB - Cipher FeedBack mode
4. OFB - Output FeedBack mode
5. CTR - CounTeR mode

ECB - Electronic Code Book mode

- A data block of a certain size (e.g. 64 bits or 128 bits or...) is entered into the algorithm with the key, and a block of cipher text is produced

$$
\begin{aligned}
& \mathrm{C}_{i}=\text { Encrypt(Key, Pi) } \\
& \text { for } i=1, \ldots, k
\end{aligned}
$$

Where:

- Ci is block i of ciphertext
- P, is a block of plaintext

- Encrypts every block the same way every time for a given key
- Why is this a problem?
$>$ This is a problem because frequency analysis of the encrypted text can reveal a lot of information
> Not enough randomness

Solution: CBC - Cipher Block Chaining mode

- Is much more secure
- Does not reveal a pattern of encryption for frequency analysis
- Each block of text, the key, and the value based on the previous block are processed in the algorithm and applied to the next block of text

- XORs a plaintext with the last encrypted block before encrypting it. This ensures that the same plaintext is encrypted differently every time.
- Requires an initialization vector (or IV) to get started, since the first block doesn't have a previous encrypted block to XOR against.

A similar concept to diffusion is known as the
 The Avalanche Effect

A changed to a single plaintext bit should have an influence over several of the resulting ciphertext bits

In a strong block cipher, if 1 plaintext bit is changed, it will change every ciphertext bit with the probability of 50%

That is, if 1 plaintext bit changes, then about $1 / 2$ of the ciphertext bits will change
Avalanche Effect: A small change to the key or to the plaintext should cause drastic changes to the resulting ciphertext

Original Image

Block cipher with ECB (Electronic Code Book) encryption

Block cipher with CBC (Cipher Block Chaining) or any of the other modes of encryption

These are good!

Agenda

\checkmark Kali Linux workaround - Alternative way to bring up a terminal window
\checkmark Some useful Linux commands
\checkmark Symmetric cryptography
\checkmark Block versus Stream ciphers
\checkmark Block ciphers
\checkmark Block ciphers mode of operations

- Hashes

One-way Hash function

- Assures message integrity
- A function that takes a variable-length string (i.e. message) and produces a fixedlength value called a hash value

1. Sender puts message through hashing function
2. Message digest generated
3. Message digest appended to the message
4. Sender sends message to receiver
5. Receiver puts message through hashing function
6. Receiver generates message digest value
7. Receiver compares the two message digests values. If they are the same, the message has not been altered

- Does not use keys

Hashing results in fixed-sized output

Names for the output of a hashing functions include "hash" and a message digest (md), because a hash "digests" an input of any size down to a fixed-sized output

- No matter the size of the input, the output is the same, for example the md5 hash function's output:
- Letter ' a ' in binary: 01000001 => md5 hash => 32-character string
- Blu-ray disk digest => md5 hash => 32-character string
- 6 TB hard drive digest => md5 hash => 32-character string

One-way hash example...

Testing the integrity of a file (e.g. program) downloaded from the internet...

One－way hash example．．．

Testing the integrity of a file（e．g．program）from the internet．．．

Image Name	Download	Size	Version	sha256sum				
Kali 64 bit	HTTP｜Torrent	2.8 G	2017.2	4556775bfb981ae64a3cb19aa0b73e8dcac6e4ba524f31c4bc14c9137b99725d				
\downarrow Downloads							－\quad－	\times
$\leftarrow \rightarrow \vee \uparrow \downarrow$ ，This PC $~$ Downloads						\checkmark	Search Downloads	\bigcirc
\＃Quick access	＾\square Name				Date modified	Type	Size	＾
Destop	＊［ kali－linux－2017．2－amd64				11／9／2017 2：31 PM	Disc Image File	2，949，824 KB	
\downarrow Downloads	＊ 2				11／8／2071／5：49 PM	Adobe Acrobat Uocul．i＇	$\cdots{ }^{215 K}$	
圏 Documents	＊$\frac{2}{2}$	2．170919＿TACS＿Fall17＿Brochure＿Proof3－WithComments			11／8／2017 5：49 PM	Adobe Acrobat Docu．．．	．．． 215 KB	
This PC		E．170919＿ITACS＿Fall17＿Brochure＿Proof3 －${ }^{\text {in }}$ Secure Components Risk and Controls Library			11／8／2017 5：32 PM	Adobe Acrobat Docu．．．	．．． 208 kB	
					11／8／2017 11：34 AM	Microsoft Excel Work．．．	．．． 103 KB	国国

Is the Kali I downloaded the same Kali that was published？

One-way hash example...

```
* Windows PowerShell
Windows Powershe|l Microsoft Corporation. All rights reserved.
PS C:\Users\tue87168> help Get-FileHash
NAME
    Get-FileHash
SYNTAX Get-FileHash [-Path] <string[]> [-Algorithm <string> {SHA1 | SHA256 | SHA384 | SHA512 | MACTripleDES | MD5 | RIPEMD160}]
    Get-FileHash [-Path]
    Get-FileHash -LiteralPath <string[]> [-Algorithm <string> {SHA1 | SHA256 | SHA384 | SHA512 | MACTripleDES | MD5 | RIPEMD160}]
    [<CommonParameters>]
    Get-FileHash -InputStream <Stream> [-Algorithm <string> {SHA1 | SHA256 | SHA384 | SHA512 | MACTripleDES | MD5 | RIPEMD160}]
ALIASES
    None
REMARKS
    Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only partial help.
        -- To download and install Help files for the module that includes this cmdlet, use Update-Help.
        To download and install Help files for the module that includes this cmdlet, use Update-
        low,
PS C:\Users\tue87168`
```


One-way hash example...

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-5.1

Nindows Power
Copyright (C) 2015 Microsoft Corporation. All rights reserved.
PS C:\Users\tue87168> dir

Directory: C:\Users\tue87168

Mode	LastWriteTime		Length Name
d-	9/27/2016	11:28 AM	.oracle_jre_usage
	8/21/2016	10:57 AM	Benefits
d-r---	10/13/2017	8:35 AM	Contacts
d-r---	11/5/2017	8:48 PM	Desktop
d-r---	11/7/2017	8:52 PM	Documents
d-r---	11/9/2017	2:31 PM	Downloads
d-r---	10/13/2017	8:35 AM	Favorites
d-r---	11/6/2017	9:33 AM	Google Drive
d-----	11/7/2017	2:53 PM	Intel
d-r---	11/2/2017	8:16 AM	Links
d-	6/20/2017	5:07 PM	logs
d-	8/10/2016	10:08 PM	MIS
d-r---	10/13/2017	8:35 AM	Music
d-r--	11/2/2017	8:16 AM	OneDrive
d-r	11/9/2017	11:46 AM	Pictures
d-----	8/8/2016	11:20 AM	Roaming
d-r---	10/13/2017	8:35 AM	Saved Games
d-r---	10/13/2017	8:35 AM	Searches
	11/17/2016	11:20 AM	Tracing
d-r---	10/13/2017	8:35 AM	Videos

[^0]Directory: C:\Users\tue87168\Downloads

Mode	LastWriteTime	
	8/10/2017	10:55 AM
	8/10/2017	11:03 AM
-a---	6/12/2017	10:29 AM
	9/27/2017	3:03 PM
	10/3/2017	8:49 PM
	11/11/2016	11:45 AM
-a---	11/9/2017	2:31 PM

Length Name
674803712 CSET_8. 0 (1).iso
674803712 CSET_8.0 (2).iso
674803712 CSET_8.0.1so
2421987328 en_project_professional_2016_x86_x64_dvd_6962236.iso 2421987328 en_visio_professional_2016_x86_x64_dvd_6962139.iso 1469054976 Fedora-Live-Workstation-x86_64-23-10.iso 3020619776 kali-1inux-2017.2-amd64.iso

One-way hash example...

Image Name	Download	Size	Version	sha256sum
Kali 64 bit	HTTP I Torrent	2.86	2017.2	$4556775 \mathrm{bfb} 981 \mathrm{ae} 64 \mathrm{a} 3 \mathrm{cb} 19 \mathrm{aa} 0 \mathrm{~b} 73 \mathrm{e} 8 \mathrm{dcac} 6 \mathrm{e} 4 \mathrm{ba524f31c4bc14c9137b99725d}$4

```
\ Windows PowerShell
PS C:\Users\tue87168> cd Downloads
PS C:\Users\tue87168\Downloads> dir #.iso
Directory: C:\Users\tue87168\Downloads
```

```
Mode LastWriteTime Length Name
```

Mode LastWriteTime Length Name
-a---- 8/10/2017 10:55 AM 674803712 CSET_8.0 (1).iso
-a---- 8/10/2017 10:55 AM 674803712 CSET_8.0 (1).iso
a----
a----
a----
a----
lol
lol
rr
rr
la---- 11/11/2016 11:45 AMM
la---- 11/11/2016 11:45 AMM
674803712 CSET 8.0.150
674803712 CSET 8.0.150
2421987328 en_project_professional_2016_x86_x64_dvd_6962236.iso
2421987328 en_project_professional_2016_x86_x64_dvd_6962236.iso
2421987328
2421987328
2421987328 en_visio_professional_2016_x86_x64_dvd_6962139.iso
2421987328 en_visio_professional_2016_x86_x64_dvd_6962139.iso
1469054976 Fedora-Live-Workstation-x86_64-23-10.iso
1469054976 Fedora-Live-Workstation-x86_64-23-10.iso
3020619776 kali-1inux-2017.2-amd64.iso
3020619776 kali-1inux-2017.2-amd64.iso
PS C:\Users\tue87168\Downloads> Get-FileHash kali-linux-2017.2-amd64.iso | Format-List
PS C:\Users\tue87168\Downloads> Get-FileHash kali-linux-2017.2-amd64.iso | Format-List
Algorithm : SHA256
Algorithm : SHA256
Hash : 4556775BFB981AE64A3CB19AA0B73E8DCAC6E4BA5 24F31C4BC14C9137B99725D
Hash : 4556775BFB981AE64A3CB19AA0B73E8DCAC6E4BA5 24F31C4BC14C9137B99725D
Path :C:\Users\tue87168\Downloads\kali-1inux-2017.2-amd64.iso
Path :C:\Users\tue87168\Downloads\kali-1inux-2017.2-amd64.iso
PS C:\Users\tue87168\Down1oads> =

```
PS C:\Users\tue87168\Down1oads> =
```


One-way hash example...

Windows PowerShell

Notice the amount of confusion and diffusion

 resulting from a 1-character change!Directory: C:\Users\tue87168\Downloads

Mode	LastWriteTime		Length	Na
	11/9/2017	3:04 PM		MIS

PS C: \Users\tue87168\Downloads> type MIS5206-IsGood.txt MIS5206 is good
PS C:\Users\tue87168\Downloads> Get-FileHash MIS5206-IsGood.txt | Format-List

Algorithm : SHA256
Hash : E6F05 3ADE3857C0EDC2896B229D0B91D4752B2D9D8C9BD4B2A45A4ACCB3999DD
Path : C:\Users\tue87168\Downloads\MIS5206-IsGood.txt

PS C:\Users\tue87168\Downloads> type MIS5206-IsGood.txt
MIS5206 is goop
PS C: \Users \backslash tue87168\Downloads> Get-FileHash MIS5206-IsGood.txt | Format-List

Algorithm : SHA256
Hash : 877B45EA5 D40D98FF8D1ABD919E154F446FEA11387DBB13DDEE448F9932928A5
Path : C:\Users\tue87168\Downloads\MIS5206-IsGood.txt

File Integrity Monitoring

- An internal control process
- Validates the integrity of operating system and application software files
- Uses hash verification to compare the current file state and a known good baseline state
- Involves calculating and storing a hash value of a known good version of the file ("original baseline")
- Compares the baseline with the calculated hash of the current state of the file to detect unauthorized changes

How are passwords stored in Linux?

Passwords are hashed!

cat /etc/passwd
oot:x:0:0:root:/root:/bin/bash
aemon:x:1:1:daemon:/usr/sbin:/bin/sh bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:65534:sync:/bin:/bin/sync
games:x:5:60:games:/usr/games:/bin/sh
man:x:6:12:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh proxy:x:13:13:proxy:/bin:/bin/sh
WN-data:x:33:33:ww-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
ist:x:38:38:Mailing List Manager:/var/list:/bin/sh rc:x:39:39:ircd:/var/run/ircd:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh oobody:x:65534:65534:nobody:/nonexistent:/bin/sh
ibuuid:x:100:101::/var/lib/libuuid:/bin/sh
hcp:x:101:102::/nonexistent:/bin/false
yslog:x:102:103::/home/syslog:/bin/fal
og.x.103:104::/home/klog:/fin/false
shd:x:104:65534::/var/run/sshd:/usr/sbin/nologin
admin:x.1000:1000:msfadmin, ,.,/home/msfadmin:/bin/bash
ind:x:105:113::/var/cache/bind:/bin/false
tfix:x:106:115::/var/spool/postfix:/bin/false
p.x:107:65534:./homo/ftp:/bin/false
res:x:108:117:PostgreSQL administrator,, ,:/var/lib/postgresql:/bin/bash ysql:x:109:118:MySQL Server, ,, :/var/lib/mysql:/bin/false
smcat55:x:110:65534::/usr/share/tomcat5.5:/bin/false
istccd:x:111:65534::/:/bin/false
ser:x:1001:1001:just a user,111,,:/home/user:/bin/bash
service:x:1002:1002: , , ,:/home/service:/bin/bash
ervice:x:1002:1002:,, ,s:/home/service:/bin/
teinetd:x:112:120::/nonexistent:/bin/false
tatd:x:114:65534::/var/lib/nfs:/bin/false
cat /etc/shadow
root:\$1\$/avpfBJ1\$x0z8wSUF9Iv./DR9E9Lid.:14747:0:99999:7::: daemon:*:14684:0:99999:7.:
in:*:14684:0:99999:7:
sys:\$1\$fuX6BPOt\$Miyc3UpOzQJqz4s5wFD910:14742:0:99999:7::
sync:*:14684:0:99999:7:
games:*:14684:0:99999:7::
man:*:14684:0:99999:7:
lp:*:14684:0:99999:7:
mail:*:14684:0:99999:7:
news:*:14684:0:99999:7:
uucp:*:14684:0:99999:7:
proxy:*:14684:0:99999:7 : :
wN-data:*:14684:0:99999:7::
backup:*:14684:0:99999:7:
list:*:14684:0:99999:7:
irc:*:14684:0:99999:7:
gnats:*:14684:0:99999:7:
hobody:*:14684:0:99999:7: :
libuuid:!:14684:0:99999:7:: :
dhcp:*:14684:0:99999:7: :
syslog:*:14684:0:99999:7: :
log: $\$ 1 \$$ f2ZVMS4K $\$ R 9 X k I$.CmLdHhdUE3X9jqP0:14742:0:99999:7: :
sshd:*:14684:0:99999:7:
sfadmin:\$1\$XN10Zj2C\$Rt/zzCW3mLtUWA.ihZjA5/:14684:0:99999:7::
ind.*:14685.0.99999.7: :
postfix: :14685:0.9999:7
ftp:*:14685:0:99999:7
:190gZUu05pAoUvfJhfcYe/:14685:0:99999:7::
(1)

ser: $\$ 1 \$ H E S u 9 x r H \$ k .03693 D G o X I i 0 K k P m U g Z 0: 14699: 0: 99999: 7:::$ service:\$1\$kR3ue7JZ\$7GxELDupr50hp6cjZ3Bu//:14715:0:99999:7:: : elnetd:*:14715:0:99999:7::
roftpd:1:14727:0:99999:7:
statd:*:15474:0:99999:7: :

Cryptanalysis Attacks

- Brute force
- Trying all key values in the keyspace
- Frequency Analysis
- Guess values based on frequency of occurrence
- Dictionary Attack
- Find plaintext based on common words
- Random Number Generator (RNG) Attack
- Predict initialization vector used by an algorithm
- Social Engineering
- Humans are the weakest link
- Known Plaintext
- Format or content of plaintext available
- Chosen Plaintext
- Attack can encrypt chosen plaintext
- Chosen Ciphertext
- Decrypt known ciphertext to discover key

Cryptanalysis Attacks

- Collisions
- Two different messages with the same hash value
- Based on the "birthday paradox"
- Hash algorithms should be resistant to this attack

> The birthday paradox, also known as the birthday problem, states that in a random group of 23 people, there is about a 50 percent chance that two people have the same birthday.

Is the Birthday Attack Real?

There are multiple reasons why this seems like a paradox

One is that when in a room with 22 other people, if a person compares her/his birthday with the birthdays of the other people it would make for only 22 comparisons-only 22 chances for people to share the same birthday.

```
When all }23\mathrm{ birthdays are compared against each other, it makes for much more than 22 comparisons.
How much more?
Well, the first person has 22 comparisons to make, but the second person was already compared to the first person, so there are only 21 comparisons to make.
```

The third person then has 20 comparisons, the fourth person has 19 and so on.
If you add up all possible comparisons $(22+21+20+19+\ldots+1)$ the sum is 253 comparisons, or combinations. Consequently, each group of 23 people involves 253 comparisons, or 253 chances for matching birthdays.

MD5 (Message Digest 5)

- A 128-bit hash algorithm, still in common use
- Has been broken
- 128-bit hash, but only need $2^{128 / 2}=2^{64}$ to find a collision
- Not strong enough for modern computers

SHA -1 (Security Hash Algorithm 1)

- A 160-bit hash algorithm, still in common use
- Has been broken
- 160 -bit hash, but only need $2^{160 / 2}=2^{80}$ to find a collision
- No longer strong enough for modern computers

```
PS C:\Users\Dave\Desktop\MD5-Hash-Collision-Example> get-filehash ProgramA.exe -Algorithm SHA256
Algorithm Hash
SHA256------ 60D13913155644883F130B85EB24D778314014C9479AEDB5F6323BF38AD3A451
C:\Users\Dave\Desktop\MD5-Hash-Collision-Example\ProgramA.exe
PS C:\Users\Dave\Desktop\MD5-Hash-Collision-Example> get-filehash ProgramB.exe -Algorithm SHA256
Algorithm Hash Path
SHA256 1316543942A8C6CD754855500CD37068EDBBD8B31C4979D2825A4E799FED6102
This program is evil!!!!
Erasing hard drive..16b...2Gb... just kidding!
Nothing was erased.
(press enter to quit)_
ProgramB run


The malware Flame used a MD5 hash collision to hijack Microsoft Windows Update and spread itself across networks
- Flame collected audio, keystrokes, screenshots which it sent to a malicious server
- Found a collision within a single millisecond
- Cost \(\sim \$ 200 \mathrm{k}\) computing time just for 1 ms
- Attributed to advanced persistent threat group Equation Group
- Espionage attacks on countries in and around Iran


\section*{PWN (verb)}
1. An act of dominating an opponent.
2. Great, ingenious; applied to methods and objects.
- Originally dates back to the days of WarCraft, when a map designer mispelled "Own" as "Pwn"
- What was originally suppose to be "player has been owned." was "player has been pwned"

Use of the term "Pwn' grew and is now used throughout the online world, especially in online games:
1. "I pwn these guys on battlenet"
2. "This strategy pwns!" or "This game pwn."
https://www.urbandictionary.com/define.php?term=pwn


Equation Group's Flame malware won 2012 "Epic Ownage" Pwnie award
- Pwnie Awards recognize both excellence and incompetence in the field of information security
- Awards are presented yearly at the Black Hat Security Conference

\section*{Hashing algorithms are used for browser ssl (secure sockets layer)}
- In 2014, many sites were still using SHA1, at the time known to be dangerously vulnerable
- Google declared state of emergency to push companies to upgrade


\footnotetext{
Most of the secure web is using an insecure algorithm, and Google's just declared it to be a
} slow-motion emergency.

Something like \(90 \%\) of websites that use SSL encryption - iattps:// - use an algorithm called SHA-1 to protect themselves from being impersonated. This guarantees that when you go to 8 https://www.facebook.com , you're visiting the real Facebook and not giving your password to an attacker.

Unfortunately, SHA-1 is dangerously weak, and has been for a long time. It gets weaker every year, but remains widely used on the internet. Its replacement, SHA-2, is strong and supported just about everywhere.

Google recently announced that if you use Chrome, then you're about to start seeing a progression of warnings for many secure websites:


SHA-2 uses 224, 256, 384, and 512-bit hashes
- But... it is built using the design of SHA-1, and prone to the same weaknesses
- It's believed to be a matter of time before SHA-2 is also exploited
- SHA-3 was just ratified recently by NIST, the U.S. National Institute of Standards and Technology
- It was the result of a six-year hashing competition. Also uses 224-, 256-, 384-, 512-bit hashes

\section*{Why does this matter for businesses?}

Business needs a reliable way to prove integrity of data, files, programs, that can be trusted

\section*{Agenda}
\(\checkmark\) Some useful Linux commands
\(\checkmark\) Symmetric cryptography
\(\checkmark\) Block versus Stream ciphers
\(\checkmark\) Block ciphers
\(\checkmark\) Block ciphers mode of operations
\(\checkmark\) Hashes```


[^0]:    S C:\Users\tue87168> cd Downloads S C:\Users\tue87168\Downloads> dir \#.iso

