	1
Systems and Infrastructure Lifecycle Management	
Introduction	
- Unit 1 -	
\$203 Systems and Infrastructure Lifecycle Management.	
1	
	1
Agenda	
Introduction IT Auditor's role in System and Infrastructure lifecycle	_
Project and Visio	
IT Auditor's responsibilities and roles	
• Information system development – a brief history	
Type of business information systems Quiz	
Quiz	
5203 Systems and Infrastructure Lifecycle Management 2	
2	
Introduction	
Introduce yourself <u>briefly</u> to your instructor and the class	
Name You Wish To Be Called Education	
Work history	_
Experience with Information Systems Development Fun Fact	
\$203 Systems and Infrastructure Lifecycle Management 3	<u> </u>
3	

Introduction

This course will introduce you to the methods used as organizations builds an enterprise information system architecture within an environment of internal control

Topics include:

• Information system planning, development, acquisition and maintenance of these technologies and their impact on the organization's business processes

4

Introduction

Course objective - help you understand what it means to:

- Evaluate the business case for the proposed investments in information systems
- Evaluate the project management framework and controls to determine whether business requirements are achieved in a cost-effective manner while managing risks to the organization
 Conduct reviews to determine whether a project is progressing in accordance with project plans, is adequately supported by documentation, and has timely and accurate status reporting
 Evaluate controls for information systems during the requirements, acquisition, development and testing standards, procedures and applicable external requirements

- Evaluate the readiness of information systems for implementation and migration into production to determine whether project deliverables, controls and the requirements are met
- Conduct post-implementation reviews of systems to determine whether project deliverables, controls and the requirements are met

5

IT Auditors' responsibilities

- Providing assurance that enterprise objectives are being met by information systems and infrastructure management practices
- Identifying which elements may represent greatest risk, and which controls are most effective at mitigating this risk

IT Auditors are responsible for	
Understanding which methodologies are in use for: Systems development, acquisition and maintenance SDLC SDLC	
Identifying potential vulnerabilities and points requiring control	
Advising project team and senior management of deficiencies and best practices within each of these processes	
processes within each of these processes	
NST SP 800-54-2 Security Considerations in the System Development Life Cycle 5.203 Systems and Infrastructure Lifecycle Management 7	
7	
,	
IT Auditor's Role in Information System Development	
Two alternative approaches	
 Review end-stage deliverables throughout the development process, without becoming part of the process 	
 Auditor reviews each stage's deliverables to ensure: What was planned from the previous stage has been accomplished and the planning of the next stage has been refined appropriately 	
ii. Planning of the next stage has been refined appropriately	
Internal control consultant, becoming part of the systems development process Auditor provides ongoing proactive recommendations by participating in selected	
project-management meetings including: risk-assessment, systems-design, development, and systems delivery meetings	
 Auditor's independence may be compromised, but this is mitigated by another auditor who should find a system with well-designed controls incorporated 	
\$203 Systems and infrastructure Lifecycle Management 8	
8	
IT Auditor's Role in Information System Daysley	
IT Auditor's Role in Information System Development	

Produce and provide formal audit reports to the appropriate business managers including:

1. Overall assessment of the controlled progress of the project

2. Areas requiring improvement to complete the project, as specified, within budget and at an appropriate level of quality

Requires an in-depth understanding of both:

1. The overall information systems development processes adopted
2. The business processes being computerized

Information Systems Development – a brief history

- Prior 1946 Before "stored-program" digital computers
 - Devices were pure hardware and had no software their computing powers were directly tied to their specific form and engineering

 - Computing as a concept goes back to ancient times
 Beginning with devices such as the abacus
 Calculating tool used in China, Europe, and Russia centuries before adoption of written Hindu-Aspic numeral system we use today

 - Continuing on through early examples of computing such as the Antikythera mechanism
 Ancient Greek analog computer used as a calendar to predict eclipses and astronomical positions decades in advance

Wikipedia - History of Software

10

Information Systems Development – a brief history

- Prior 1946 Before "stored-program" digital computers
 - 1837 The Analytical Engine

 - First design for a general-purpose computer
 Designed by English mathematician Charles Babbage
 - Incorporated:
 - · Integrated memory

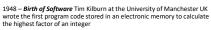
 - Arithmetic logic unit
 Control flow in the form of conditional branching and loops
 - Logical structure essentially the same as the computer design that dominates in today's electronic era
 - First known computer program was written by Ada Lovelace to implement Luigi Menabrea's equations for generating a Bernoulli number sequence of rational numbers
 The Analytical Engine predated the techniques of electrical engineering needed to run it

11

Information Systems Development – a brief history

Prior 1946 - Before "stored-program" digital computers

- 1935 Alan Turing proposed the first modern theory of software
 - Software requires
 - A general-purpose processor described as a Turing machine
 - Computer memory
 - In which reusable sets of routines and mathematical functions comprising programs can be stored, started, and stopped individually
 - This concept is recent in human history, led to the creation of the twin academic fields of computer science and software engineering



Wikipedia – History of Software

Information Systems Development – a brief history

• 1948 – 1979 Early days of computer software

- 1948 Claud Shannon "Father of Information Theory" wrote A
 Mathematical theory of Communication and provided an outline for how
 binary logic could be implemented to program a computer
 - Subsequently, the first computer programmers used binary code to instruct computers to perform various tasks

Wikipedia – History of Software

Margaret Hamilton led development of the onboard flight software for NASA's Apollo spacecraft coined the term "software engineering"

13

Oriented Language)

Information Systems Development – a brief history

• 1948 – 1979 Early days of computer software

- 1960's Massachusetts Institute of Technology, AT&T Bell Labs, and General Electric jointly developed an experimental time sharing operating system called Multics
- . Allowing multiple users to access a mainframe computer simultaneously 1970's – Bell Lab's researchers left the team and implemented a self-hosting operating system that became UNIX on a minicomputer
 - Included concepts of computer processes, device files, hierarchical file system, command-line interpreter, editor, programing shell, and assembler

 - Text editor and first text formatting and publishing program written in assembly language
 - · 1971 UNIX Programmer's Manual written
 - 1973 Unix Version 3 rewritten in higher-level C language
 - Most popular variant of Unix today is macOS Mac OS X
 - · Linux is closely related

Wikipedia – History of Software

14

Information Systems Development – a brief history

- 1975 Early days of computer software
 - 1975 Micro Instrumentation and Telemetry Systems begins selling Altair 8800 microcomputer kit by mail order
 - Microsoft released its first product Altair BASIC Operating system
 - Before microcomputers a successful software program sold for \$50,000 \$60,000 each in units of 1,000 units; PC software sold thousands of copies for \$50 \$700 each

Era	Hardware	Operating System	Applications	21200.1205.52
Mainframe (1970s)	Terminals connected to mainframe computer.	Time-sharing (TSO) on MVS	Custom-written MRP software	Manufacturing Resource Planning (ERI
PC (mid-1980s)	IBM PC or compatible. Sometimes connected to mainframe computer via expansion card.	MS-DOS	WordPerfect, Lotus 1-2-3	SAD
Client-Server (late 80s to early 90s)	IBM PC "clone" on a Novell Network.	Windows for Workgroups	Microsoft Word, Microsoft Excel	Enterprise Resource Planning (ERP)
World Wide Web (mid- 90s to early 2000s)	IBM PC "clone" connected to company intranet.	Windows XP	Microsoft Office, Internet Explorer	
Web 2.0 (mid- 2000s to present)	Laptop connected to company Wi-Fi.	Windows 7	Microsoft Office, Firefox	amazon.com
Post-PC (today and beyond)	Apple iPad	ios	Mobile-friendly websites, mobile apps	

Information Systems Development – a brief history

- First-generation computer programming Languages "1GLs" (1948 1950's)
- Second-generation "2GLs" (1950's today)
- Third-generation "3GLs" (1950's today)
- Fourth-generation "4GLs" (1970's today)
- Fifth-generation "5GLs" (1980's today)

Citation: https://www.revolvy.com

17

Information Systems Development – a brief history

- First-generation "IGLs" (1948 1950's)

 Binary machine languages entered through front panel switches

 Second-generation "ZGLs" (1950's today) Machine-dependent assembly languages

 Code read and written by a programmer, to run on a computer it must be converted into a machine readable form, a process called assembly

 Assembly language is specific to a particular processor family and environment (today usually found in device drivers)

 Considered "low-level" because they are designed for and executed by physical hardware without further translation required.
- Third-generation "3GLs" (1950's today) High-level programming languages, such as FORTRAN, LISP, COBOL, BASIC, Pascal, C, C++, CR, Java, and Javascript
 Machine independent, more programmer-friendly, considered "high-level" because they are closer to human languages and further from machine languages, and hence require compilation or interpretation
 Must be translated into machine language by a compiler or directly into behavior by an interpreter or compiler
 Support structured programming, some support object-oriented programming

Citation: https://www.revolvy.com

Information Systems Development – a brief history

- Fourth-generation "4GLs" (1970's today) Add additional features within general purpose 3GL environments, attempt to get closer to human language and require less coding than lower-level languages, such as Python, Ruby and Peri Command-line languages that making the second of the command-line languages that the second of the command-line languages the second of the command-line languages the second of the command-line languages the second of the
 - PérI

 Command-line languages that may includes support for general processing (e.g. UNIX Shell, Visual DataFlex, PowerBuilder, Cognos PowerHouse 4GL, DataFlex, IBM Rational EGL, Oracle Application, Development Farmework,...)

 Report generation (e.g. RP-Gil, Oracle Reports, Progress 4GL)

 Report generation (e.g. RP-Gil, Oracle Reports, Progress 4GL)

 Data manipulation and mathematical analysis (e.g. ASS, SPSS, RS, PL, VSQL, Stata, MATLAZB, MathProg...)

 Graphical User interface (CUI) development (RQL, Ysuals DataFlex, Progress 4GL, OPenRoad, 4th Dimension,...),

 Web development (e.g. ActiveVPP, ETML, Wavemaker, OutSystems...)
- Fifth-generation "SGLs" (1980's today) Solve problems by providing constraints to a general inferencing program without a programmer writing additional code or developing additional algorithms

 Mainly used in artificial intelligence languages built on LTSP (e.g. 0755, SMFS, Mercuy...)

 In 1980, fifth-generation languages considered "way of the future". Some predicted they would replace all other languages for intelligence and the second of the self-gauges.

 1982 to 1993, Japan intelligence languages considered and self-gauges.

 1982 to 1993, Japan intelligence languages considered and self-gauges.

 1982 to 1993, Japan intelligence languages considered and self-gauges.

 1982 to 1993, Japan intelligence languages considered and self-gauges.

 2015 to 1993, Japan intelligence languages considered and self-gauges.

 2016 to 1993, Japan intelligence languages considered and self-gauges.

 2017 to 1993, Japan intelligence languages considered and self-gauges.

 2018 to 1994, Japan intelligence languages considered and self-gauges the languages.

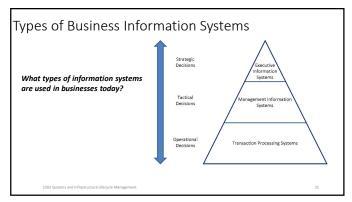
 - - This crucial step cannot yet be automated and still requires the insight of a human developer

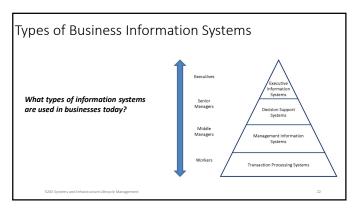
19

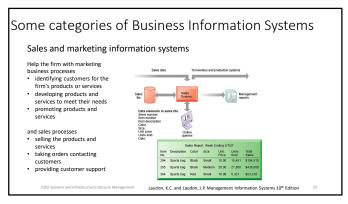
Information Systems Development – a brief history

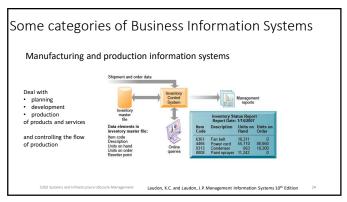
Most information systems today are developed with a combination of 3GL and 4GL capabilities

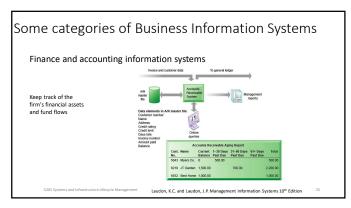
Third-generation "3GLs" (1950's - today)

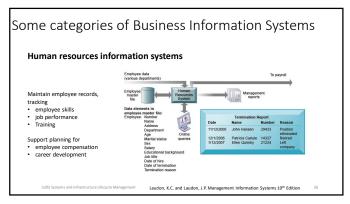

· High-level programming languages, such as FORTRAN, LISP, COBOL, BASIC, Pascal, C, C++, C#, Java, and Javascript

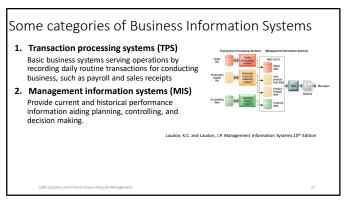

Fourth-generation "4GLs" (1970's - today)

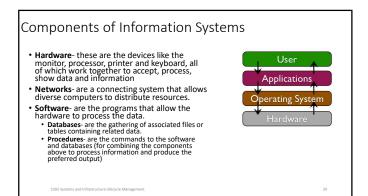

 Add additional features within general purpose 3GL environments, attempt to get closer to human language and require less coding than lower-level languages, such as Python, Ruby and Perl


Citation: https://www.revolvy.com


20







Some categories of Business Information Systems 3. Decision support systems (DSS) a.k.a. business intelligence systems • Support non-routine decisions not easily specified in advance • Use a variety of analytic models applied to large amounts of internal and external data 4. Executive support systems (ESS) • For non-routine strategic decisions requiring judgment, evaluation, and insight • Visual presentations of data within an interactive interface easy for senior managers to use • Information often delivered via a web portal as integrated information

28

29

Information System Development Methods — Next week Unit #2 Software development lifecycle (SDLC) models are formal management processes for guiding the development of information systems These include: • Waterfall Models • Waterfall • Structured Systems Analysis and Design Method (SSADM) • Spiral and Iterative Models • Structured Rapid Prototyping • Rapid Application development (RAD) • Agile Models • Rational Unified Model If execution of the SDLC methodology is inadequate, however, the project may fail to meet business and user needs. • Is Auditor is responsible for verifying that the SDLC model is appropriate for the project's goals and is properly implemented 2018 Systems and divinational to Microscope Management

Quiz	
Normally, it would be essential to involve which of the following stakeholders in the initiation stage of a project? a) System owners b) System users c) System designers	
d) System builders	
An IS auditor has been asked to participate in project initiation meetings for a critical project. The IS auditor's MAIN concern should be that the: a) complexity and risk associated with the project have been analyzed. b) resources needed throughout the project have been determined.	
c) technical deliverables have been identified. d) a contract for external parties involved in the project has been completed.	
5203 Systems and Infrastructure Lifecycle Management 31	
31	
Agenda	
Introduction IT Auditor's role in System and Infrastructure lifecycle	
Project and VisioIT Auditor's responsibilities and roles	
 Information system development – a brief history Type of business information systems 	
• Quiz	
\$300 Systems and Infrastructure Lifecycle Management 32	
32	