
1

SOFTWARE DESIGN ITACS 5203, Unit 9

LEARNING OBJECTIVES
3.1.1. IS Auditor’s Role in SDLC Project Management
3.1.2. Software Development Methods
3.1.2.1. Prototyping
3.1.2.2. Rapid Application Development
3.1.2.3. Agile Development
3.1.2.4. Object Oriented System Development
3.1.2.5. Component Based Development
3.1.2.6. Web Based Application Development
3.1.2.7. Software Reengineering
3.1.2.8. Reverse Engineering
3.1.2.9. DevOps
3.1.2.10. Business Process Reengineering and Process Change
3.1.2.10.1. Benchmarking Process
3.1.2.10.2. IS Auditors Role in Business Process Reengineering
3.1.3. System Development Tools and Productivity Aids
3.1.3.1. Computer Aided Software Engineering
3.1.3.2. Code Generators
3.1.3.3. Fourth Generation Languages
3.1.3.3.1. Query and Report Generators
3.1.3.3.2. Embedded Databases
3.1.3.3.3. Relational Databases
3.1.3.3.4. Application Generators
3.1.3.3.5. Characteristics:
3.1.3.3.5.1. Nonprocedural
3.1.3.3.5.2. Environmental Independence
3.1.3.3.5.3. Software Facilities
3.1.3.3.5.4. Programmer Workbench Concepts
3.1.3.3.5.5. Simple Language Subsets
3.2. Control Identification and Design
3.2.1. Input/Origination Controls
3.2.1.1. Input Authorization
3.2.1.2. Batch Controls and Balancing
3.2.1.3. Error Reporting and Handling
3.2.2. Processing Procedures and Controls
3.2.2.1. Data Validation and Editing Procedures
3.2.2.2. Processing Controls
3.2.2.3. Data File Control Procedures
3.2.3. Output Controls
3.2.4. Application Controls
3.2.4.1. IS Auditor’s Role in Reviewing Application Controls
3.2.5. User Procedures3.1. System Development Methodologies
3.1.1. SDLC Phases
3.1.1.1. Implementation
3.1.1.1.1. Configuration
3.1.1.1.2. Development
3.1.1.1.2.1. Programming Methods and Techniques
3.1.1.1.2.2. Integrated Development Environment
3.1.1.1.2.3. Programming Languages
3.1.1.1.2.4. Program Debugging
3.1.1.2. Testing and Implementation
3.1.1.3. Post Implementation Review

Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

1.5. Procedural Security
1.6. Modular Programming
1.7. Sensitive Data Mapping
1.8. Reducing the System Attack Surface

INTRODUCTION
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Analysis determines the business needs

Design activities focus on how to build the system

Major activity is to evolve the models into a design
Goal is to create a blueprint for the design that makes sense to implement
 Determine how and where data will be stored
 Determine how the user will interface with the system (user interface, inputs and outputs)

Decide on the physical architecture

Analysis and design phases are highly interrelated and may require much “going back and forth”
 Example: prototyping may uncover additional information

1

2

3

2

DESIGN PROCESS
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Verify and validate the analysis models

Evolve the analysis models into design models

Create packages and utilize package diagrams

Decide upon a design strategy

STRUCTURAL DESIGN MODELS (UML)
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Structural Software Design Models using UML:

Use Case

Use Case
Descriptions

Activity
Diagrams

Sequence
Diagrams

Design Class
Diagram

State Machine
Diagram

Note: This is a functional
model; we learned about

this previously.

DESIGN CLASS DIAGRAM
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

stereotype a way of categorizing a model element by its characteristics
 indicated by guillemets (<< >>)

persistent class an class whose objects exist after a system is shut down (data remembered)

entity class a design identifier for a problem domain class (usually persistent)

boundary class or view class a class that exists on a system’s automation boundary, such as an input
window form or Web page

control class a class that mediates between boundary classes and entity classes, acting as a switchboard
between the view layer and domain layer

data access class a class that is used to retrieve data from and send data to a database

4

5

6

3

DESIGN CLASS DIAGRAM
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

<< Stereotype >>
Class Name::Parent Class

<< Entity >>
AccountHolder::Customer

Attribute List
Visibility name:type-expression = initial-value {property}

- SocialSecurityNumber:string=000-00-0000 {key}
+ Age:Integer

Method List
Visibility name (parameter list) : return type-expression

+ ValidateSSN(SocialSecurityNumber) : Boolean

Underline “static” – AKA, applies
to the entire class, not a specific

object.

An abstract class must be
italicized. Concrete classes

are not.

DESIGN CLASS DIAGRAM
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

NAVIGATION VISIBILITY
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

 The ability of one object to view and interact with another object

 Accomplished by adding an object reference variable to a class.

 Shown as an arrow head on the association line—customer can find and interact with sale because it has mySale reference variable

7

8

9

4

NAVIGATION VISIBILITY GUIDELINES
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

One-to-many associations that indicate a superior/subordinate
relationship are usually navigated from the superior to the
subordinate

Mandatory associations, in which objects in one class can’t exist
without objects of another class, are usually navigated from the
more independent class to the dependent

When an object needs information from another object, a
navigation arrow might be required

Navigation arrows may be bidirectional.

START WITH FUNCTIONAL MODELS…
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Proceed use case by use case, adding to the diagram

Pick the domain classes that are involved in the use case (see
preconditions and post conditions for ideas)

Add a controller class to be in charge of the use case

Determine the initial navigation visibility requirements using the
guidelines and add to diagram

Elaborate the attributes of each class with visibility and type

Note that often the associations and multiplicity are removed from
the design class diagram as in text to emphasize navigation, but
they are often left on

EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

10

11

12

5

USE CRC CARDS TO DEFINE METHODS
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

CRC Cards—Classes, Responsibilities, Collaboration Cards

OO design is about assigning Responsibilities to Classes for how they
Collaborate to accomplish a use case

Usually a manual process done in a brainstorming session
3 X 5 note cards
One card per class
Front has responsibilities and collaborations
Back has attributes needed

CRC CARD EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Customer

Update name
Update address
Request purchase history
Process sale
Make payments

Sale (ID)
Payment (ID)

customerNumber
customerName
customerAddress
shippingAddress
dayPhone
nightPhone

Class Name Collaborating classes
with return data

Responsibilities
Attributes on back

CRC CARD PROCEDURE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Because the process is to design, or realize, a single use case, start with a set of unused CRC cards. Add
a controller class (Controller design pattern).

Identify a problem domain class that has primary responsibility for this use case that will receive the first
message from the use case controller. For example, a Customer object for new sale.

Use the first cut design class diagram to identify other classes that must collaborate with the primary
object class to complete the use case.

Have use case descriptions and SSDs handy

Start with the class that gets the first message from the controller. Name the responsibility and write it on
card.

Now ask what this first class needs to carry out the responsibility. Assign other classes responsibilities to
satisfy each need. Write responsibilities on those cards.

Sometimes different designers play the role of each class, acting out the use case by verbally sending
messages to each other demonstrating responsibilities

Add collaborators to cards showing which collaborate with which. Add attributes to back when data is
used

Eventually, user interface classes or even data access classes can be added

13

14

15

6

CRC CARD PROCEDURE EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

STATE MACHINE DIAGRAM
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

State machine diagram
 A UML diagram showing the life of an object in states and transitions

State
 A condition during an object’s life when it satisfies some criterion, performs some action, or waits for an event

Transition
 The movement of an object from one state to another state

Action Expression
 A description of activities performed as part of a transition

Pseudo state
 The starting point of a state machine diagram (black dot)

Origin state
 The original state of an object before transition

Destination state
 The state to which the object moves after the transition

Guard condition
 A true false test to see whether a transition can fire

STATE MACHINE EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Off On
onButtonPush [cover closed] / self test

offButtonPushed

Beginning pseudostate
denotes start of the state
machine diagram.

State indicates a state of
being of the object

Transition moves the object from the
origin state to the destination state.

Transition name Guard Condition Action-expression

16

17

18

7

COMPOSITE STATES
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security On

--

Idle

Working

Load and print sheets

Print(document)

[finished]

Off On

CONCURRENT STATES
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

On
--

Idle

Working

Load and print sheets

Print(document)

[finished]

empty Full Low
fill() lowMsg()

fill()
trayEmpty()

STEPS FOR DEVELOPING A STATE MACHINE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

1. Review the class diagram and select classes that might require state machine
diagrams

2. For each class, make a list of status conditions (states) you can identify
3. Begin building diagram fragments by identifying transitions that cause an object

to leave the identified state
4. Sequence these states in the correct order and aggregate combinations into

larger fragments
5. Review paths and look for independent, concurrent paths
6. Look for additional transitions and test both directions
7. Expand each transition with appropriate message event, guard condition, and

action expression
8. Review and test the state machine diagram for the class

 Make sure state are really state for the object in the class
 Follow the life cycle of an object coming into existence and being deleted
 Be sure the diagram covers all exception condition
 Look again for concurrent paths and composite states

19

20

21

8

STEPS FOR DEVELOPING A STATE MACHINE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

1. Review the class diagram and select classes that might require state machine
diagrams

2. For each class, make a list of status conditions (states) you can identify
3. Begin building diagram fragments by identifying transitions that cause an object

to leave the identified state
4. Sequence these states in the correct order and aggregate combinations into

larger fragments
5. Review paths and look for independent, concurrent paths
6. Look for additional transitions and test both directions
7. Expand each transition with appropriate message event, guard condition, and

action expression
8. Review and test the state machine diagram for the class

 Make sure state are really state for the object in the class
 Follow the life cycle of an object coming into existence and being deleted
 Be sure the diagram covers all exception condition
 Look again for concurrent paths and composite states

STATE MACHINE EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

STATE MACHINE EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

22

23

24

9

STATE MACHINE EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

STRUCTURAL DESIGN MODELS (UML)

Behavioral Software Design Models using UML:

Use Case

Use Case
Descriptions

Activity
Diagrams

Sequence
Diagrams

Design Class
Diagram

State Machine
Diagram

Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Note: This model is probably
the most useful in describing
how the system should work.
It relies on all other models.

ACTIVITY DIAGRAM
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Start with the Use Case; fully develop the use case, then augment with a workflow diagram that described the use
case.

Especially useful for use cases that are complicated, not obvious, or not a generally understood process

 Example: Shipping a package is a generally well understood process.
 Return Merchandise Authorization is not generally well understood, and should be clarified with an activity diagram in the fully

developed use case.

Typical fully developed use case description includes:

 Use case name
 Scenario (if needed)

 Triggering event
 Brief description
 Actors
 Related use cases (<<includes>>)
 Stakeholders
 Preconditions

 Post conditions
 Flow of activities
 Exception conditions

25

26

27

10

ACTIVITY DIAGRAM SYNTAX
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Actor System
Actor

or
System

Actions

Initial
State

Decision

Split

Join

Final
State

ACTIVITY DIAGRAM EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Customer System
Request
Account

Create
Customer

Enter
addresses

Create
addresses

Enter credit
info

Create
account

Verify
credit

Return account
details

SEQUENCE DIAGRAM SYNTAX
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security :System

inquireOnItem(ID,size)

Clerk

Item information
Item information:

Description, price, quantity

The actor interacting with
the system

An input message

An object (underlined)
representing a class

The object lifeline; shows
the “sequence” of
messages, top to bottom

Optional note to explain
something in a diagram

A return value

28

29

30

11

SEQUENCE DIAGRAM SYNTAX
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

An asterisk (*) indicates a repeating or looping of the message.

Brackets [] indicate a true/false condition. This is a test for that message only. If it evaluates to true, the message
is sent. If it evaluates to false, the message isn’t sent.

Message-name is the description of the requested service. It is omitted on dashed-line return messages, which only
show the return data parameters.

Parameter-list (with parenthesis on initiating messages and without parenthesis on return messages) shows the data
that are passed with the message.

Return-value on the same line as the message (requires :=) is used to describe data being returned from the
destination object to the source object in response to the message.

SEQUENCE DIAGRAM SYNTAX - LOOP
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

:Inventory

* [another item] description, price

:= getItem(itemID)

:Inventory

getItem(itemID)

description, price

Test condition for
repeatability

Repeat
everything
in the
rectangle

:Order

:Order

Inventory

-ItemID: Integer
-Description: String
-Price: Float

+createItem(Description, Price):Boolean
+getItem (ItemID): Collection

Order

-OrderID:Integer
-CustomerID:Integer
-OrderItems:Collection

+createOrder():Integer
+addCustomer (CustomerID):Boolean
+addItem (ItemID, Quantity):Boolean

Test condition for
repeatability

Note: Class and
Sequence MUST
be consistent with
one another!

SEQUENCE DIAGRAM SYNTAX - CONDITIONS
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

:SystemClerk

addAccessory (anAccessory)

accessory details

[accessory selected]

31

32

33

12

SEQUENCE DIAGRAM SYNTAX - CONDITIONS
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

:SystemClerk

addSalesTax (locationCode)

Sales tax

[taxable item]

[else]

addTaxExemptCode(eCode)

Tax exempt detail

SEQUENCE DIAGRAM EXAMPLE
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

BALANCING FUNCTIONAL, STRUCTURAL AND
BEHAVIORAL MODELS

Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

A class on a class diagram must be associated with at least one use-case

An activity in an activity diagram and an event in a use-case description should be related to one or more operations
on a class diagram

An object node on an activity diagram must be associated with an instance or an attribute on a class diagram

An attribute or an association/aggregation relationship on a class diagram should be related to the subject or object
of a use-case

Sequence & communication diagrams must be associated with a use-case

Actors on sequence & communication diagrams or CRUDE matrices must be associated with actors within a use-
case

Messages on sequence & communication diagrams, transitions on behavioral state machines and entries in a
CRUDE matrix must relate to activities on an activity diagram and events in a use-case

All complex objects in activity diagrams must be represented in a behavioral state machine

34

35

36

13

FACTORING
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Creating modules that account for similarities and differences between units of interest

New classes formed through a:
 Generalization (a-kind-of) relationship, or a

 Aggregation (has-parts) relationship

Abstraction—create a higher level class (e.g., create an Employee class from a set of job positions)

Refinement—create a detailed class (e.g., create a secretary or bookkeeper from the Employee class)

DESIGN PATTERNS
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Use layers to represent and separate elements of the software architecture
 Easier to understand a complex system

 Example:
 Model-view-controller (MVC) architecture

 Separates application logic from user interface

 Proposed layers:
 Foundation (e.g., container classes)

 Problem domain (e.g., encapsulation, inheritance, polymorphism)

 Data management (e.g., data storage and retrieval)

 User interface (e.g., data input forms)

 Physical architecture (e.g., specific computers and networks)

PACKAGES
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Packages group together similar components (e.g., use-cases, class diagrams)

Package diagrams show the packages and their relationships
 Aggregation & association relationships are possible

 Packages may be dependent upon one another
 If one package is modified, others that depend on it may also require modification

37

38

39

14

COUPLING
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

A quantitative measure of how closely related classes are linked (tightly or
loosely coupled)

Two classes are tightly coupled of there are lots of associations with another
class

Two classes are tightly coupled if there are lots of messages to another class
It is best to have classes that are loosely coupled
If deciding between two alternative designs, choose the one where overall
coupling is less

COHESION
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

A quantitative measure of the focus or unity of purpose within a single class
(high or low cohesiveness

One class has high cohesiveness if all of its responsibilities are consistent and
make sense for purpose of the class (a customer carries out responsibilities
that naturally apply to customers)

One class has low cohesiveness if its responsibilities are broad or makeshift
It is best to have classes that are highly cohesive
If deciding between two alternative designs, choose the one where overall
cohesiveness is high

PROTECTION FROM VARIATIONS
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

A design principle that states parts of a system unlikely to change are
separated (protected) from those that will surely change

Separate user interface forms and pages that are likely to change from
application logic

Put database connection and SQL logic that is likely to change in a separate
classes from application logic

Use adaptor classes that are likely to change when interfacing with other
systems

If deciding between two alternative designs, choose the one where there is
protection from variations

40

41

42

15

INDIRECTION
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

A design principle that states an intermediate class is placed between two
classes to decouple them but still link them

A controller class between UI classes and problem domain classes is an
example

Supports low coupling
Indirection is used to support security by directing messages to an
intermediate class as in a firewall

If deciding between two alternative designs, choose the one where indirection
reduces coupling or provides greater security

OBJECT RESPONSIBILITY
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

A design principle that states objects are responsible for carrying out system
processing

A fundamental assumption of OO design and programming
Responsibilities include “knowing” and “doing”
Objects know about other objects (associations) and they know about their
attribute values. Objects know how to carry out methods, do what they are
asked to do.

Note that CRC cards and the design in the next chapter involve assigning
responsibilities to classes to carry out a use case.

If deciding between two alternative designs, choose the one where objects
are assigned responsibilities to collaborate to complete tasks (don’t think
procedurally).

FUNCTIONAL AND NON-FUNCTIONAL SECURITY
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Why should this be a part of the system?
What are the constraints on this requirement?
What are the dependencies on this requirement?
Who are the stakeholders for this requirement?

43

44

45

16

ERROR HANDLING
Introduction
Structural

Class Diagram
State Machine

Behavioral
Activity Diagram
Sequence Diagram

Design
Security

Fail Case
Consequence of Failure
Associated Risks

What are the exceptions to the normal case for this requirement?
What sensitive information is included in this requirement?
What are the consequences if the condition of this requirement are violated
What happens if this requirement is intentionally violated?

SUMMARY (CONT.)

46

47

