
3/1/23

1

Modern Systems Analysis and Design
Ninth Edition

Chapter 1

The Systems Development 
Environment

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Slides in this presentation contain 
hyperlinks. JAWS users should be 
able to get a list of links by using 
INSERT+F7

1

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Learning Objectives
1.1 Define information systems analysis and design

1.2 Describe the information systems development life cycle 
(SDLC)

1.3 Describe the agile methodologies, eXtreme 
Programming, and Scrum

1.4 Explain object-oriented analysis and design and the 
Rational Unified Process (RUP)

2

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Introduction
• Information Systems Analysis and Design

– Defined as the complex, challenging, and simulating 
organizational process that a team of business and 
systems professionals uses to develop and maintain 
information systems

• Application Software
– Software designed to support organizational function or 

process

• Systems Analyst
– Organizational role most responsible for analysis and 

design of information systems

3



3/1/23

2

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-1: An Organizational Approach to 
Systems Analysis and Design Is Driven by 
Methodologies, Techniques, and Tools

(Sources: Top: Monkey Business Images/Shutterstock; Left: benchart/Shutterstock; Right: Lifestyle Graphic/Shutterstock)

4

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

A Modern Approach to Systems 
Analysis and Design (1 of 3)

1.1 Define information systems analysis and design
• 1950s

– Goal was efficiency of processing
– Emphasis was on automating existing processes
– All applications developed in machine or assembly language

• 1960s
– Advent of procedural (third-generation) languages
– Enabled development of smaller, faster, less expensive computers

• 1970s
– System development came to be more disciplined
– Became more like engineering as focus shifted from process first to 

data first

5

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

A Modern Approach to Systems 
Analysis and Design (2 of 3)

1.1 Define information systems analysis and design
• 1980s

– Marked by major breakthroughs in organizations as microcomputers 
became key organizational tools

– Software industry expanded writing off-the-shelf software
– 4GL development led to instructing computers what to do instead of 

how to do it

• 1990s
– Focused on system integration
– Developers used visual programming environments (Visual Basic)
– Relational and object-oriented databases developed
– Enterprise-wide systems developed
– Web and Internet applications begun and expanded

6



3/1/23

3

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

A Modern Approach to Systems 
Analysis and Design (3 of 3)

1.1 Define information systems analysis and design
• Present day

– Continued focus on developing systems for the Internet and for 
firm’s intranets and extranets

– Implementation involving three-tier design
▪ Database on one server
▪ Application on second server
▪ Client logic located on user machines

– Move to wireless system components (access from anywhere)
– Continuing trend toward assembling systems from programs and 

components purchased off the shelf

7

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Developing Information Systems and 
the Systems Development Life Cycle
1.2 Describe the information systems development life cycle 
(SDLC)
• Systems development methodology

– A standard process followed in an organization to 
conduct all the steps necessary to analyze, design, 
implement, and maintain information systems

• The systems development life cycle (SDLC)
– The traditional methodology used to develop, maintain, 

and replace information systems
▪ Features several phases that mark the progress of 

the systems analysis and design efforts

8

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Systems Development Life Cycle
Figure 1-2 Systems development life cycle
1.2 Describe the information systems development life cycle 
(SDLC)
• A circular process, with the end of the useful life leading to 

the start of another

• At any given phase the project can return to a previous 
phase when needed

• Can be an iterative process

9



3/1/23

4

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-2: Systems Development Life 
Cycle

10

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Evolutionary Model
1.2 Describe the information systems development life cycle 
(SDLC)
• A spiral process in which one is constantly cycling through 

phases at different levels

11

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-3: Evolutionary Model

12



3/1/23

5

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Phases of the SDLC (1 of 3)

1.2 Describe the information systems development life cycle (SDLC)

• Planning
– Need for a new or enhanced system is identified
– Needs are identified, analyzed, prioritized, and arranged
– Determine the scope of the proposed system
– Baseline project plan is developed

• Analysis
– System requirements are studied from user input and structured
– Requires careful study of current systems, manual and 

computerized, that might be replaced or be enhanced
– Output is description of the alternate solution recommend by the 

analysis team

13

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Phases of the SDLC (2 of 3)

1.2 Describe the information systems development life cycle (SDLC)

• Design
– Analyst converts the alternate solution into logical and physical 

specifications
– Logical Design

▪ The design process part that is independent of any specific 
hardware or software platform

– Physical Design
▪ The logical specifications of the system from logical design are 

transformed into technology-specific details from which all 
programing/system construction can be accomplished

– Choices of language, database, and platform are many times 
already decided by the organization or client

14

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Phases of the SDLC (3 of 3)

1.2 Describe the information systems development life cycle (SDLC)

• Implementation
– Occurs when the information system is coded, tested, installed, 

and supported in the organization
– New systems become part of the daily activities of the 

organization

• Maintenance
– The phase in which an information system is systematically 

repaired and improved
– Organization’s needs may change over time requiring changes to 

the system based on user’s needs

15



3/1/23

6

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Table 1-1: Products of SDLC Phases
1.2 Describe the information systems development life cycle (SDLC)

Phase Products, Outputs, or Deliverables
Planning • Priorities for system and projects; an architecture for data, networks, and selection 

hardware, and information systems management are the result of associated systems
• Detailed steps, or work plan, for project
• Specification of system scope and planning and high-level system requirements or features
• Assignment of team members and other resources
• System justification or business case

Analysis • Description of current system and where problems or opportunities exist, with a general 
recommendation on how to fix, enhance, or replace current system

• Explanation of alternative systems and justification for chosen alternative
Design • Functional, detailed specifications of system elements (data, processes, inputs, and 

outputs)
• Technical, detailed specifications of all system elements (programs, files, network, system 

software, etc.)
• Acquisition plan for new technology

Implementation • Code, documentation, training procedures, and support capabilities

Maintenance • New versions or releases of software with associated updates to documentation, training, 
and support

16

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Analysis-Design-Code-Test Loop
1.2 Describe the information systems development life cycle 
(SDLC)

• The Analysis-Design-Code-Test Loop is an example of 
traditional practice

17

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-6: Analysis-Design-Code-Test 
Loop

18



3/1/23

7

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Heart of Systems Development
1.2 Describe the information systems development life cycle 
(SDLC)

• Current practice combines analysis, design, and 
implementation into a single process

19

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-7: Heart of Systems 
Development

20

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

The SDLC Traditional Waterfall 
Problems
1.2 Describe the information systems development life cycle 
(SDLC)
• Once one phase ends another begins, going downhill until 

complete

• Makes it difficult to go back

• Results in great expense to make changes

• Role of system users or customers narrowly defined

• Focused on deadlines

21



3/1/23

8

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-8: Traditional Waterfall SDLC

22

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Agile Methodologies
1.3 Describe the agile methodologies, eXtreme 
Programming, and Scrum
• Agile methodologies share three key principles:

1. A focus on adaptive rather than predictive 
methodologies

2. A focus on people rather than roles
3. A focus on self-adaptive processes

23

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Table 1-2: The Agile Manifesto (1 of 3)

• The agile methodologies group argues that software 
development methodologies adapted from engineering 
generally do not fit with real world software development

• The Manifesto for Agile Software Development (Table 1-2)
– Seventeen anarchists agree
– We are uncovering better ways of developing software by 

doing it and helping others do it. Through this work we have 
come to value:
▪ Individuals and interactions over processes and tools
▪ Working software over comprehensive documentation
▪ Customer collaboration over contract negotiation
▪ Responding to change over following a plan

24



3/1/23

9

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Table 1-2: The Agile Manifesto (2 of 3)

– That is, while we value the items on the right, we value the items on the left 
more. We follow the following principles:
▪ The highest priority is to satisfy the customer through early and 

continuous delivery of valuable software.
▪ Welcome changing requirements, even late in development. Agile 

processes harness change for the customer’s competitive advantage.
▪ Deliver working software frequently, from a couple of weeks to a couple 

of months, with a preference to the shorter timescale.
▪ Businesspeople and developers work together daily throughout the 

project.
▪ Build projects around motivated individuals. Give them the environment 

and support they need and trust them to get the job done.
▪ The most efficient and effective method of conveying information to and 

within a development team is face-to-face conversation.
▪ Working software is the primary measure of progress.

25

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Table 1-2: The Agile Manifesto (3 of 3)

▪ Continuous attention to technical excellence and good design 
enhances agility.

▪ Agile processes promote sustainable development. The sponsors, 
developers, and users should be able to maintain a constant pace 
indefinitely.

▪ Simplicity—the art of maximizing the amount of work not done—is 
essential.

▪ The best architectures, requirements, and designs emerge from self-
organizing teams.

▪ At regular intervals, the team reflects on how to become more 
effective, then tunes and adjusts its behavior accordingly.

--Kent Beck, Mike Beedle, Are van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim 
Highsmith, Andrew Hunt, Ron Jefferies, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff 
Sutherland, Dave Thomas (www.AgileAlliance.org)

26

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Agile Methodologies—Not for Every 
Project
1.3 Describe the agile methodologies, eXtreme 
Programming, and Scrum
• Agile methodologies are not for everyone

• Fowler recommends an agile process if your project 
involves

– unpredictable or dynamic requirements
– responsible and motivated developers
– customers who understand the process and will get 

involved

27

http://www.agilealliance.org/


3/1/23

10

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Table 1-3: Five Critical Factors that Distinguish Agile 
and Traditional Approaches to System Development
1.3 Describe the agile methodologies, eXtreme Programming, and Scrum

Factor Agile Methods Traditional Methods
Size Well matched to small products and teams 

Reliance on tacit knowledge limits scalability
Methods evolved to handle large products and 
teams Hard to tailor down to small products

Criticality Untested on safety-critical products
Potential difficulties with simple design and 
lack of documentation

Methods evolved to handle highly critical products 
Hard to tailor down to products that are not critical.

Dynamism Simple design and continuous refactoring
are excellent for highly dynamic environments 
but a source of potentially expensive rework 
for highly stable environments

Detailed plans and Big Design Up Front, excellent 
for highly stable environment but a source of 
expensive rework for highly dynamic environments

Personnel Requires continuous presence of a critical 
mass of scarce experts 
Risky to use non-agile people

Needs a critical mass of scarce experts during 
project definition but can work with fewer later in the 
project, unless the environment is highly dynamic

Culture Thrives in a culture where people feel 
comfortable and empowered by having many 
degrees of freedom (thriving on chaos)

Thrives in a culture where people feel comfortable 
and empowered by having their roles defined by 
clear practices and procedures (thriving on order)

28

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

eXtreme Programming (1 of 2)

1.3 Describe the agile methodologies, eXtreme Programming, and Scrum

• Short, incremental development cycles

• Focus on automated tests written by programmers

• Emphasis on two-person programming teams

• Customers to monitor the development process

• Relevant parts of eXtreme Programming that relate to design 
specifications are
1. How planning, analysis, design, and construction are all fused into a 

single phase of activity
2. Its unique way of capturing and presenting system requirement and 

design specifications

29

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

eXtreme Programming (2 of 2)

1.3 Describe the agile methodologies, eXtreme Programming, and Scrum

• Coding and testing are related parts of the same process

• Advantages include
– Increased communications among developers
– Higher levels of productivity
– Higher quality code
– Reinforcement of other practices in eXtreme Programming

▪ Include code-and-test discipline

30



3/1/23

11

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Scrum (1 of 3)

1.3 Describe the agile methodologies, eXtreme Programming, and Scrum

• Originated in 1995 by Sutherland and Schwaber

• Most popular methodology for agile (58%)
– Scrum framework includes
– Scrum teams with associated roles, events, artifacts, and rules
– Each team consists of three roles

▪ Product owner
▪ Development team
▪ Scrum master

31

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Scrum (2 of 3)

1.3 Describe the agile methodologies, eXtreme Programming, and Scrum

• Scrum designed for speed and multiple functional product releases

• Primary unit is the Sprint (runs two weeks to a month)
– Starts with an eight-hour planning meeting

▪ What needs to be delivered by the end of the sprint
▪ How will the team accomplish that work

– Daily Standup: A 15-minute meeting held to evaluate progress 
made within the past 24 hours and what needs to be done

32

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Scrum (3 of 3)

1.3 Describe the agile methodologies, eXtreme Programming, and Scrum

– At the end of the sprint, two additional meetings
▪ The Sprint Review: (4 hours) focusing on the product, what has 

been accomplished, and what needs to be done
▪ The Sprint Retrospective: (3 hours) focusing on team 

performance and how it can improve
– Three primary artifacts in the Scrum process

1. Product Backlog: Listing of potential requirements
2. Sprint Backlog: Listing of only items to be addressed in a 

particular sprint
3. Increment: Represents the sum of all the Product Backlog items 

completed during a sprint.

33



3/1/23

12

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Agile in Practice
1.3 Describe the agile methodologies, eXtreme Programming, 
and Scrum
• Three primary factors critical for success

– Delivery strategy: Continuous delivery of working 
software in short time scales

– Following agile software engineering practices
– Team capability: Agile principle of building projects 

around motivated individuals

• Agile development offers managers and programmers more 
choice in their efforts to produce good systems that come in 
on time and under budget

34

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Object-Oriented Analysis and Design 
(OOAD)
1.4 Explain object-oriented analysis and design and the Rational 
Unified Process (RUP)

• Based on objects rather than data or processes

• Combines data and processes (called methods) into single 
entities call objects

• Object: A structure that encapsulates attributes and methods 
that operate on those attributes

• Inheritance: Hierarchical arrangement of classes enabling 
subclasses to inherit properties of superclasses

• Object Class: Logical grouping of objects that have the same 
attributes and behaviors

35

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Relational Unified Process (RUP)
1.4 Explain object-oriented analysis and design and the Rational 
Unified Process (RUP)

• Relational Unified Process (RUP) is an object-oriented systems 
development methodology

• Based on an iterative, incremental approach to systems 
development

• RUPs four phases (each can be further divided)
– Inception
– Elaboration
– Construction
– Transition

36



3/1/23

13

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Figure 1-9: Phases of OOAD-Based 
Development

37

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Our Approach to Systems Development
1.4 Explain object-oriented analysis and design and the 
Rational Unified Process (RUP)
• Criticisms of the SDLC include

– Forced timed phases on intangible and dynamic 
processes were doomed to fail

– Life-cycle reliance has resulted in massive amounts of 
process and documentation

– Cycles are not necessarily waterfalls

38

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Summary
• In this chapter you learned how to:

– Define information systems analysis and design
– Describe the information systems development life 

cycle (SDLC)
– Describe Agile Methodologies, eXtreme Programming, 

and Scrum
– Explain object-oriented analysis and design and the 

Relational Unified Process (RUP)

39



3/1/23

14

Copyright © 2020, 2017, 2014 Pearson Education, Inc. All Rights Reserved

Copyright

This work is protected by United States copyright laws and is
provided solely for the use of instructors in teaching their 
courses and assessing student learning. Dissemination or sale of 
any part of this work (including on the World Wide Web) will 
destroy the integrity of the work and is not permitted. The work 
and materials from it should never be made available to students 
except by instructors using the accompanying text in their 
classes. All recipients of this work are expected to abide by these 
restrictions and to honor the intended pedagogical purposes and 
the needs of other instructors who rely on these materials.

40


