
1ISACA JOURNAL VOLUME 4, 2012

This is the second part of a two-part article
on a process-oriented framework for auditing
applications. Part 1 (volume 3, 2012) detailed
the first three steps: planning, determining
objectives and mapping. The remaining steps are
described here. The full framework includes the
following steps:
• Plan the audit.
• Determine audit objectives.
• Map systems and data flows.
• Identify key controls.
• Understand application’s functionality.
• Perform applicable tests.
• Avoid/consider complications.
• Include financial assertions.
• Consider beneficial tools.
• Complete the report.

IDENTIFY KEY CONTROLS
When evaluating the relevant controls, the
IT auditor will want to distinguish between
customized controls and those contained in
commercial off-the-shelf software (COTS). For
custom-built controls, inquiry is a good place to
begin the evaluation. One of the key questions is
to ask management the specific nature of controls
expertise being injected into the application
development process. That is, who or what group
is providing the expertise that makes sure adequate
controls are embedded in new applications?
How is that goal achieved? And, finally, the IT

auditor should make sure those controls have been
properly documented and tested.

For COTS, the IT auditor would probably
start with a walk-through to determine what
controls are actually in the application and how
they function. A walk-through would involve
following transactions or processes step by step,
keystroke by keystroke, with the data-entry
person explaining what they are doing and why.
Such a process should enable the IT auditor to
gain a general understanding of the applications’
controls, the adequacy of controls and the nature
of them (i.e., effectiveness). This walk-through is
especially necessary the first time an application
is used by the entity.

Also for COTS, the IT auditor should
establish a baseline of controls—tests to
understand reliability and effectiveness. These
would include configurations for applications,
such as SAP and Oracle.

For COTS, the IT auditor needs to determine
the responsibility of vendors involved. That goal
is why figure 1, which is part of the mapping
step and detailed in part 1 of this article, has
information about the vendor and the nature of
maintenance of the application. When a problem
occurs with the application, management
needs to have assurance of exactly who to rely
upon to solve the problem. Obviously, vendor
management practices apply.

Tommie W. Singleton, Ph.D.,

CISA, CGEIT, CITP, CPA, is

an associate professor of

information systems (IS) at

Columbus State University

(Columbus, Georgia, USA).

Prior to obtaining his

doctorate in accountancy from

the University of Mississippi

(USA) in 1995, Singleton was

president of a small, value-

added dealer of accounting

using microcomputers.

Singleton is also a scholar-

in-residence for IT audit

and forensic accounting at

Carr Riggs & Ingram, a large

regional public accounting

firm in the southeastern US. In

1999, the Alabama Society of

CPAs awarded Singleton the

1998–1999 Innovative User of

Technology Award. His articles

on fraud, IT/IS, IT auditing and

IT governance have appeared

in numerous publications.

Auditing Applications, Part 2

Do you have
something
to say about
this article?

Visit the Journal
pages of the ISACA
web site (www.isaca.
org/journal), find the
article, and choose
the Comments tab to
share your thoughts.

Go directly to the article:

Figure 1—Mapping Example Using Spreadsheet, Part I

IT Description O/S DBMS DB Server Data Location

ABC App Middleware designed to ... N.A. N.A. XYZ Birmingham

DEF App CRM, target ... Z/OS DB2 Z mainframe Nashville

Figure 1— Mapping Example Using Spreadsheet, Part II

Developed Maintained Owner Access Admin Change Control Notes

In-house In-house Sue Z.Q. Active directory ... Controls include ... Yada ...

Vendor Vendor, SOC1/2 available John D. Security admin ... Vendor ... Yada ...

2 ISACA JOURNAL VOLUME 4, 2012

The same is likely to be true of testing security and
access controls.

Some special considerations include at least a couple
of things that the typical end user and business manager
tend to overlook in the information-requirements-gathering
stage: security and proper scope of data captured. The
proper level of security is obviously a critical success factor in

AppDev and, thus, needs to be
evaluated. Typically, users and
managers do not fully grasp the
scope of data that need to be
captured at the point of events
and transactions. This fact is
especially important if the entity
has any plans to ever employ,

for example, business intelligence (BI) or business analytics.
A richness of data becomes necessary to “slice and dice” data
with data mining tools to gain the maximum benefit of the
data in employing BI.

Operational controls might be in scope, depending on
the consideration of purpose. The same is true for financial
reporting controls.

Using the system model is likely to make analysis
and testing of the application’s functionality easier and
more complete.

PERFORM APPLICABLE TESTS
When an application fails to perform correctly, when there are
errors created, when processes embedded in the application
fail to work properly, the problem can usually be traced back
to an improper testing phase. Testing the application is more
than just performing a single test.

The best practice for testing involves multiple levels of
testing. First, the application is tested stand-alone. That is
usually done by a senior programmer or analyst who is chiefly
responsible for the AppDev project. Then, the application goes
through some quality control in the IT department. That is, it is
independently tested by some expert in the IT department.

Next, the application is tested by actual users. Often, these
end users are involved in a cyclical manner as the application
is being developed. But, at a minimum, one or more end users
should test the application once it is fully developed in order
to determine its functionality, completeness, accuracy and
efficiency. After completion, it is customary to have those end

The types of controls can be assessed by using the
typical systems model: input, process and output. Input
controls include:
• Access security
• Logical segregation of duties (SoD)
• Data validation
• Data integrity
• Coding
• Input error correction
• Batch controls (where applicable)

Typical process controls include:
• The level of automation (e.g., fully automated,

IT-dependent, fully manual)
• Job scheduler dependencies (for job processing)
• Job scheduler monitoring
• Auto calculations
• Auto reconciliations
• Auto notifications

Typical output controls include:
• Reconciliations
• Reviews
• Approvals
• Error detection/error reports or lists
• Control over physical reports (ancillary control)

UNDERSTAND APPLICATION’S FUNCTIONALITY
Normally, auditing functionality is a chief audit goal. The
procedures involve verifying the operational functionality,
which should be described in the information requirements
in the application development (AppDev) process. Besides
reviewing the authorization document for the application, the
IT auditor should review the end-user acceptance report—if
one exists. If one does not exist, that says something about
the adequacy of control procedures for AppDev: They are
lacking a best practice.

Some typical objectives are related to the purpose of the
application. When testing the application, consideration
is given to the various scenarios needed to properly test
the application. If the purpose of the application leads to a
dichotomous outcome, a test of one might suffice (yes or no,
approved or not approved, etc.). But, if the application is an
update to payroll processing, for example, there are a large
number of scenarios to consider to test all of the various
combinations of factors that go into calculating payroll taxes.

”
“The problem can

usually be traced
back to an improper
testing phase.

3ISACA JOURNAL VOLUME 4, 2012

INCLUDE FINANCIAL ASSERTIONS
When financial reporting is in scope, the application needs to
address the primary assertions of the account balance, class
of transactions or disclosure. Does the application include
the appropriate controls related to the primary assertions of
the end result account balance or class of transactions? The
IT auditor, if applicable, should test the application against
the appropriate assertion(s). For instance, if the assertion is
accuracy, testing might include things such as:
• Data entry validation controls
• Automatic calculations
• Automatic reconciliations

Existence assertions might be tested for data entry
validation controls. Completeness assertions might be tested
for job/batch processing controls or reconciliations.

CONSIDER BENEFICIAL TOOLS
Some useful tools for testing applications are computer-assisted
audit techniques (CAATs) and ETL. CAATs are helpful in
conducting procedures, such as data mining, that examine
results in data from posting by the application to determine
if the application’s controls are working, if the application is
working properly and if the application produced any errors.
CAATs are also useful in analyzing data for objectives such as
data integrity.

ETL is useful in detecting flawed data that can be traced
back to the application that produced it and, thus, provide the
opportunity to correct the flaw in the application.

users sign an end-user acceptance report, documenting the
results of the test.

Then, the application is tested in conjunction with
other applications in the same module, cycle, or class of
transactions. That often requires a more robust environment
than earlier testing of the application as stand-alone. A
staging area has become one of the best ways to perform this
test, where a simulator is created of the entity’s infrastructure,
applications, systems and databases. But, that is not the
end either. The application should be tested in the context
of the enterprise system, with all of the data transfers and
interfacing that goes on in actual IT operations. That process
in particular needs a staging area.

AVOID/CONSIDER COMPLICATIONS
There are a number of complications that are inherently
risky and, thus, need consideration during the application
audit. First, proprietary (custom-built) applications have a
high inherent risk. This fact affects the objectives, planning,
controls and risks steps.

If a data warehouse (DW) is involved, there is a relatively
high inherent risk. Almost universally, when a DW is initially
implemented, data being imported into the DW have a high
risk due to, for example, inconsistencies in data (same field with
different names), missing data and bad data (i.e., errors). Thus,
when data are extracted from the transaction processing systems
(TPS), care should be taken in mapping the data and using
the ETL (extract, transform and load) process to identify and
correct the previously mentioned data anomalies.

For the ongoing DW, data owners could, for example,
change field names and add fields, and if change controls
are not effective, the data cannot pass through the next ETL
process successfully. Thus, change management controls for
DW are highly important. The same is true for other similar
integration functions.

Some distinction should be made between two types of risk
with DWs. First, there is process integrity. This integrity is about
whether the processing is successful. Does the application do
what it should do regarding its processing function? Second,
there is data integrity or data quality, which involves the
reliability and integrity of the data being processed, transferred
and recorded. Were the data entered valid? Are the source data
valid, accurate and complete? Was the data transfer from source
to target completed effectively, with no errors?

• Read COBIT and Application Controls: A Management
Guide.

www.isaca.org/
COBIT-Application-Controls

• Discuss and collaborate on audit tools and
techniques and audit guidelines in the
Knowledge Center.

www.isaca.org/knowledgecenter

4 ISACA JOURNAL VOLUME 4, 2012

containing a control deficiency and in need of either a change
in the application or a compensating control. There are other
applications that could make use of this test.

Second, if the application is a file maintenance program,
the system would (hopefully) minimize situations in which an
employee could make undocumented changes to the inventory

data that lead to discrepancies
and data errors. Controls are
needed to prevent this anomaly.
For example, use of logical
SoD could limit employees
who can make file maintenance
changes. Also, the application/
system could track changes

by recording data before the change and after the change.
Without such tracking, employees could falsify changes and
create errors or fraud in the data. Data mining could spot
differences in account balances by taking the beginning
balance, adding up all transactions and verifying the sum
against the ending balance. A similar situation exists for any
file maintenance application.

COMPLETE THE REPORT
Obviously all audits end with some kind of report. Those
reports are generally proprietary in format. But, they tend to
include the audit objectives, tests conducted, results of tests
(usually) and recommendations.

CONCLUSION
The successful audit of applications is dependent on a reliable
approach. This two-part article demonstrates a reliable
approach and some tools that should be helpful in conducting
the audit, especially mapping and CAATs.

ADDITIONAL RESOURCES
Bitterli, Peter R., et al; “Guide to Audit of IT Applications,”
ISACA Switzerland Chapter, 2010

ERP Seminars, “Auditing Application Controls,” 2008,
www.auditnet.org/docs/Auditing_Application_Controls.pdf

SANS Institute, “The Application Audit Process,” InfoSec
Reading Room, www.sans.org/reading_room/whitepapers/
auditing/application-audit-process-guide-information-
security-professionals_1534

Tests of Controls
Some possible tests of controls include:
• Reconciliation
• Recalculation
• Duplication
• Gaps

An example of reconciliation might be verifying the customer
ID in the transaction file against the customer ID in the master
file. That is, do the customers in the transaction file actually
exist in the authorized customer list? Another example is
recalculating where the IT auditor might extend the inventory
database to see if the total inventory costs match the control
total in the general ledger (i.e., the account balance). Duplicates
and gaps are useful in detecting errors in data processing.

CAATs
CAATs could be used to reperform automatic calculations or
automatic reconciliations.

Data Mining
Data mining could be used to support the audit objectives.
In particular, it is useful in conducting IT-related substantive
procedures, such as testing approvals or classification errors
related to proper codes.

Purchase Order Thresholds
Any time an application involves a threshold where
initial/additional approval is needed, CAATs are useful
in determining if that control is operating effectively. For
instance, if the application is either purchase orders or
disbursements, and if purchases and payments are one-to-one
(i.e., disbursements are paid by invoice and not statements), a
simple test of extracting all disbursements over the threshold
against the data file containing the approval (e.g., purchase
order file) would expose any exceptions to the control/
threshold. This also has the added benefit of fraud detection if
someone is frustrating the threshold deliberately to perpetrate
a fraud.

Inventory Anomalies
If the app is recording receipt of inventory, CAATs could be
used to show whether the application allows zero or negative
quantities to be recorded. Obviously that constitutes an
error (anomaly) and, thus, the application would be seen as

”
“The successful audit

of applications is
dependent on a
reliable approach.

