Protecting Information Assets
- Unit #7 -

Physical and
Environmental Security
Agenda

• Questions from Project Teams
• Physical and Environmental Security
• Physical Security
• Environmental Security
• Quiz
• In the News
Team Project

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Assignment Topics</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to MIS5206</td>
<td>Aug. 30</td>
</tr>
<tr>
<td></td>
<td>Understanding an Organization’s Risk Environment</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Case Study 1: Snowfall and a stolen laptop</td>
<td>Sept. 6</td>
</tr>
<tr>
<td>3</td>
<td>Data Classification Process and Models</td>
<td>Sept. 13</td>
</tr>
<tr>
<td>4</td>
<td>Risk Evaluation</td>
<td>Sept. 20</td>
</tr>
<tr>
<td></td>
<td>Team Project Assignment</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Team Project Assignment (continued)</td>
<td>Sept. 27</td>
</tr>
<tr>
<td></td>
<td>Creating a Security Aware Organization</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Midterm Exam</td>
<td>Oct. 4</td>
</tr>
<tr>
<td>7</td>
<td>Physical and Environmental Security</td>
<td>Oct. 11</td>
</tr>
<tr>
<td>8</td>
<td>Case Study 2: *A Hospital Catches the “Millennium Bug”</td>
<td>Oct. 18</td>
</tr>
<tr>
<td>9</td>
<td>Business Continuity and Disaster Recovery Planning</td>
<td>Oct. 25</td>
</tr>
<tr>
<td>10</td>
<td>Network Security</td>
<td>Nov. 1</td>
</tr>
<tr>
<td>11</td>
<td>Case Study 3: Autopsy of a Data Breach: The Target Case</td>
<td>Nov. 8</td>
</tr>
<tr>
<td>12</td>
<td>Cryptography, Public Key Encryption and Digital Signatures</td>
<td>Nov. 15</td>
</tr>
<tr>
<td></td>
<td>Identity Management and Access Control</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Team Project Presentations</td>
<td>Nov. 29</td>
</tr>
<tr>
<td>14</td>
<td>Computer Application Security</td>
<td>Dec. 6</td>
</tr>
<tr>
<td></td>
<td>Team Project Presentations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Exam</td>
<td>Dec. 13</td>
</tr>
</tbody>
</table>
Team Project

Context

• You and your team have volunteered to participate in a free community information security clinic ("ITACS Clinic") and provide support to a under-served small local business

• In a prior meeting your team was introduced to a number of small businesses and community support organizations
 — At that meeting you did a great job introducing your company and the service you are offering through the clinic

• One organization that attended the meeting has taken you up on your offer, and signed up to meet with you and receive intensive help from your team
Team Project

Mission

Your Team’s Mission is to prepare and deliver a presentation to the owners and leaders of the business. Your goal is to educate the owner and manager of the business about:

1. The process you will guide them through to help them secure their computers and data
2. “Homework” you need them to complete containing the information you need them to gather and bring to your next meeting (Example handout – needs modification)
3. Why the information you are asking for is important, how you will use it, and why they should be motivated to help you help them plan their organization’s information security
Team Project Deliverables

1. Presentation
2. Well-organized GoogleDocs folder team project folder containing 2 and 3
3. Team project PowerPoint slide presentation
4. (optional) Materials for supporting your client in completing their “homework” assignment
5. Individual 360° project team review submitted as PDF file via your individual Google Docks folder. Format as bulleted list of
 – What I contributed to the project
 – What each named member of my team contributed to the project
Physical and Environmental (PE) Security

...encompasses protection of physical assets from damage, misuse, or theft

• Physical security addresses
 – ...mechanisms used to create secure areas around hardware

• Environmental security addresses
 – ...safety of assets from damage from environmental concerns
Physical and Environmental (PE) Security

Focuses on controlling the impact of hazardous energies and materials on Information Systems

• Addresses physical protection of the organization’s resources, including:
 1. People
 2. IT Equipment and facilities
 3. Information systems
 4. Data

• Concerns:
 – People safety
 – Environmental issues can affect equipment and systems
 – People (as threats) can affect physically enter an environment

Saving human lives is the first priority in any life-threatening situation

People safety always takes precedence over the other security factors
Sources of threats...

Materials

- **Water** – floods, leaks
- **Chemicals and particulates** - smoke, toxic materials, industrial pollution
- **Organism** - virus, bacteria, animal, insect
- ...

Energy

- **Fire**
- **Explosion**
- **Electricity, magnetism, radio wave** anomalies
- **Human** – vandalism, sabotage, theft, terrorism, war
- ...

MIS 5206 Protecting Information Assets
<table>
<thead>
<tr>
<th>CNTL NO.</th>
<th>CONTROL NAME</th>
<th>CONTROL NAME</th>
<th>CONTROL NAME</th>
<th>CONTROL NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE-1</td>
<td>Physical and Environmental Protection Policy and Procedures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-2</td>
<td>Physical Access Authorizations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-3</td>
<td>Physical Access Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-4</td>
<td>Access Control for Transmission Medium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-5</td>
<td>Access Control for Output Devices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-6</td>
<td>Monitoring Physical Access</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-6(1)</td>
<td>MONITORING PHYSICAL ACCESS</td>
<td>INTRUSION ALARMS / SURVEILLANCE EQUIPMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-6(2)</td>
<td>MONITORING PHYSICAL ACCESS</td>
<td>AUTOMATED INTRUSION RECOGNITION / RESPONSES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-6(3)</td>
<td>MONITORING PHYSICAL ACCESS</td>
<td>VIDEO SURVEILLANCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-6(4)</td>
<td>MONITORING PHYSICAL ACCESS</td>
<td>MONITORING PHYSICAL ACCESS TO INFORMATION SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-7</td>
<td>Visitor Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-8</td>
<td>Visitor Access Records</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-8(1)</td>
<td>VISITOR ACCESS RECORDS</td>
<td>AUTOMATED RECORDS MAINTENANCE / REVIEW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-8(2)</td>
<td>VISITOR ACCESS RECORDS</td>
<td>PHYSICAL ACCESS RECORDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-9</td>
<td>Power Equipment and Cabling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-10</td>
<td>Emergency Shutoff</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-10(1)</td>
<td>EMERGENCY SHUTOFF</td>
<td>ACCIDENTAL / UNAUTHORIZED ACTIVATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-11</td>
<td>Emergency Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-11(1)</td>
<td>EMERGENCY POWER</td>
<td>LONG-TERM ALTERNATE POWER SUPPLY - MINIMAL OPERATIONAL CAPABILITY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-12</td>
<td>Emergency Lighting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-13</td>
<td>Fire Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-13(1)</td>
<td>FIRE PROTECTION</td>
<td>DETECTION DEVICES / SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-13(2)</td>
<td>FIRE PROTECTION</td>
<td>SUPPRESSION DEVICES / SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-13(3)</td>
<td>FIRE PROTECTION</td>
<td>AUTOMATIC FIRE SUPPRESSION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-15</td>
<td>Water Damage Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-15(1)</td>
<td>WATER DAMAGE PROTECTION</td>
<td>AUTOMATION SUPPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-16</td>
<td>Delivery and Removal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-17</td>
<td>Alternate Work Site</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE-18</td>
<td>Location of information System Components</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MIS 5206 Protecting Information Assets
Auditing a PE control

<table>
<thead>
<tr>
<th>PE-1 PHYSICAL AND ENVIRONMENTAL PROTECTION POLICY AND PROCEDURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT OBJECTIVE:</td>
</tr>
<tr>
<td>Determine if the organization:</td>
</tr>
<tr>
<td>PE-1(a)(1) [a]</td>
</tr>
<tr>
<td>develops and documents a physical and environmental protection policy that addresses:</td>
</tr>
<tr>
<td>PE-1(a)(1)[a] purpose;</td>
</tr>
<tr>
<td>PE-1(a)(1)[b] scope;</td>
</tr>
<tr>
<td>PE-1(a)(1)[c] roles;</td>
</tr>
<tr>
<td>PE-1(a)(1)[d] responsibilities;</td>
</tr>
<tr>
<td>PE-1(a)(1)[e] management commitment;</td>
</tr>
<tr>
<td>PE-1(a)(1)[f] coordination among organizational entities;</td>
</tr>
<tr>
<td>PE-1(a)(1)[g] compliance;</td>
</tr>
<tr>
<td>PE-1(a)(1)[2] defines personnel or roles to whom the physical and environmental protection policy is to be disseminated;</td>
</tr>
<tr>
<td>PE-1(a)(1)[3] disseminates the physical and environmental protection policy to organization-defined personnel or roles;</td>
</tr>
</tbody>
</table>

| **PE-1(a)(2)** |
| develops and documents procedures to facilitate the implementation of the physical and environmental protection policy and associated physical and environmental protection controls; |
| **PE-1(a)(2)[1]** defines personnel or roles to whom the procedures are to be disseminated; |
| **PE-1(a)(2)[2]** disseminates the procedures to organization-defined personnel or roles; |
| **PE-1(b)(1)** |
| defines the frequency to review and update the current physical and environmental protection policy; |
| **PE-1(b)(1)[1]** reviews and updates the current physical and environmental protection policy with the organization-defined frequency; |
| **PE-1(b)(2)** |
| defines the frequency to review and update the current physical and environmental protection procedures; |
| **PE-1(b)(2)[1]** reviews and updates the current physical and environmental protection procedures with the organization-defined frequency; |

POTENTIAL ASSESSMENT METHODS AND OBJECTS:

Examine: [SELECT FROM: Physical and environmental protection policy and procedures; other relevant documents or records].

Interview: [SELECT FROM: Organizational personnel with physical and environmental protection responsibilities; organizational personnel with information security responsibilities].
How would you audit the existence and strength of the PE-3 Control?
Physical Control Types

<table>
<thead>
<tr>
<th>Physical Controls</th>
<th>Perimeter security, fences, lighting, facility construction, keys and locks, access card and readers, ...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administrative Controls</td>
<td>Facility selection, facility construction and management, personnel identity badges and controls, evacuation procedures, system shutdown procedures, fire suppression procedures, hardware failure procedures, bomb threat and lock down procedures,...</td>
</tr>
<tr>
<td>Technical Controls</td>
<td>Physical access control and monitoring system, intrusion detection and alarm system, fire detection and suppression system, uninterrupted power supply, heating / ventilation / air conditioning system (HVAC), disk mirroring, data backup,...</td>
</tr>
</tbody>
</table>
Perimeter Security

Perimeter security controls are used to prevent, detect and respond to unauthorized access to a facility.
Perimeter Control

Fencing – different heights serve different purposes:
- 3 – 4 feet – deter casual trespassers
- 6 – 7 feet – deter general intruders
- 8 feet with barbed wire slanted at a 45° angle – deter more determined intruders

PIDAS – Perimeter Intrusion and Detection Assessment System
- Fencing system with mesh wire and passive cable vibration sensors
- Detects intruder approaching and damaging the fence (may generate many false alarms)

Bollards – Small round concrete pillars placed around a building
- Protects from damage by someone running a vehicle into the side of the building or getting too close for car-bomb

Lighting – Streetlights, floodlights or searchlights
- Good deterrents for unauthorized access and personnel safety
- National Institute of Standards and Technology (NIST) standard requires critical areas to be illuminated 8 feet in height with 2-foot candle power
Perimeter Control example...
Perimeter Security - *physical control for facilities*

Natural access control to limit opportunities for crime

- Uses security zones to restrict movement and differentiate between areas
- Requiring different levels of protection
 - Public areas
 - Semi-private area
 - Private areas
- Limiting points of entry into a building, using structures (e.g. sidewalks & lights) to guide visitors to main entrances and reception areas
Target Hardening

– Complements natural access controls by using mechanical and/or operational controls:
 • e.g. door and window locks
 • alarms, guards and receptionists
 • visitor sign-in/sign-out procedures
 • picture identification requirements,…
Facilities – Data Center

• Should not be located on the top floor because of risk of fire

• Should not be in the basement nor underneath bathrooms - flooding risk

• Ideally in the core of a building - provides protection from natural disasters and intrusion

• Should not be close to a public area – to ease security
Technical Physical Access Monitoring Controls

Dry contact switch - uses metallic foil tape as a contact detector to detect whether a door or window is opened

Electro-mechanical detection system - detects a change or break in a circuit. It can be used as a contact detector to detect whether a door or window is opened

Vibration detection system - detects movement on walls, ceiling, floors by vibration

Pressure mat - detects whether there is someone stepping on the mat

Visual recording device - Camera and Closed Circuit TV (CCTV), records the activities taking place in a particular area. It should be used together with security guards to detect for anomalies
Technical Physical Access Monitoring Controls

Photoelectric or photometric detection system - emits a beam of light and monitors the beam to detect for motion and break-in

Wave pattern motion detector - generates microwave or ultrasonic wave, and monitors the emitted wave to detect for motion

Passive infrared detection system - detects for changes of heat wave generated by an intruder

Audio or Acoustical-seismic detection system - listens for changes in noise level

Proximity detector or capacitance detector - emits magnetic field and monitors the field to detect for any interruption. It is especially useful for protecting specific objects
Construction design considerations

Exterior Walls – Able to withstand high winds, reduce electronic emanations (when needed), avoid windows at lower levels – otherwise fixed, shatterproof, opaque to conceal inside activities, and reinforced with bars at lower levels (when needed)...

Interior Walls – Must extend from floor to ceiling (through dropped ceilings and raised floors to stop intruders) if adjacent to restricted or secure areas, meet building and fire ratings (flammable material storage ratings), reinforced (Kevlar) to protect sensitive areas...

Doors – Resistant to forcible entry, fire rating equal to surrounding walls, unlocked from inside with emergency marking, electronic locks and access controls should “fail-soft” (unlocked during power outage) or “fail-safe” (locked during power outage) intrusion detection alarm, doors that swing out to facilitate emergency existing have hinges on the outside which must be secured so hinge pins are not easily lifted by placement of doors...

Windows – characteristics of windows material (opaque, translucent, transparent, shatterproof, bulletproof), intrusion detection alarms, placement of windows...
Construction design considerations

Ceilings – Consider fire and weigh-bearing building codes, waterproofing to prevent water leakage from upper floors.
 – Drop-ceiling may temporarily hide intruders and small water leaks; conversely
 – Stained ceiling tiles can reveal leaks while temporarily impeding water damage

Floors – Consider fire and weight-bearing building codes
 – Raised floors require electrical grounding and non-conducting material to prevent safety risks

Wiring – All conduits, cable runs and wiring must be protected and comply with building and fire codes
 – Special plenum cabling must be used because PVC-clad cabling releases toxic chemicals when it burns

Lighting – Exterior lighting for all physical spaces
 – All conduits, cable runs and wiring must be protected and comply with building and fire codes
Server rooms, wiring closets, media and evidence storage facilities contain high-value equipment and media critical to:

- *Ongoing business operations*
- *Supporting investigations*

Physical security controls for these locations can include:

- **Strong access control**
 - Bi-factor (or tri-factor): key cards, PIN pad or biometric

- **Fire suppression**
 - Inert gas fire suppression is more common than water sprinklers
 - *Water damages computer equipment*

- **Video surveillance**
 - Cameras focused to observe on goings of both intruders and authorized personnel

- **Visitor log**
 - Signed by all visitors classified as needing a continuous escort

- **Asset check-in / check-out log**
 - All personnel are required to log introduction and removal of any equipment and media
Restricted and work area security often receive additional physical security controls beyond:

- **Key card access control systems**
- **Video surveillance**

Physical security controls for secure locations may also include:

- **Multi-factor key card entry**
 - Bi-factor (or tri-factor): Key cards + PIN pad or biometric
- **Security guards and guard dogs**
 - At ingress/egress points to prevent unauthorized access, roaming facility alert for unauthorized personnel or activities, involved in capture of unauthorized personnel in a facility
- **Security wall and fences**
 - 1 or more to keep authorized personnel away from facilities
- **Security lighting**
 - Additional lighting to expose and deter would-be intruders
- **Security gates, crash gates, and bollards**
 - Limit the movement of vehicles near a facility to reduce vehicle-borne threats
Physical security controls for secure locations may also include:

- **Mantrap**

 - Made of two doors, one for entry, one for exit from the booth/mantrap

 - When the first door is open, the second remains locked until the first one is closed and the individual inside the booth is cleared by a security operator monitoring this interlocking system
Utilities - and Heating, Ventilation, and Air Conditioning (HVAC) ...are *environmental and life safety controls* necessary for maintaining safe and acceptable operating environment for computers and humans

- **Electrical power**

 - 1+ dedicated feeders from 1+ utility substations or power grids

 - Adequate physical access controls to circuit breakers and distribution panels

 - **Emergency Power Off (EPO)** switch installed near major systems and exit doors

 - *To shut down power in response to fire or electrical shock*

- **Backup power**

 - *Only for critical facilities and systems*

 - *Source: Diesel or natural gas*

 » *Fuel source must be locally stored for emergency life systems (such as emergency lighting and fire protection systems) – this often rules out natural gas pipelines*
Electrical power continued...

– **Controls for electrostatic discharge (ESD)**
 - Ideal humidity level for computer equipment is 40% - 60%
 - Higher causes condensation and corrosion
 - Lower increases potential for static electricity (ESD)
 » Static charge of 40V (volts) can damage circuits and 2,000V can shutdown a system
 » Minimum discharge felt by humans is 3,000V (if you feel it there’s a problem)
 - Proper grounding in-place
 - Antistatic flooring, carpeting, and floor mats

– **Controls for electrical noise – a “transient” is a momentary line-noise disturbance**
 - Power line conditioners installed
 - Proper grounding in place
 - Shielded cables used

– **Electric anomalies include:**
 - Any amount of current over 0.01 amp is capable of producing painful to severe shock
 - Currents between 0.1 to 0.2 amp are lethal

 It is not the volts that kill – it’s the amps!
Electrical power continued...

- **Uninterruptible Power Supply (UPS)**
 - Is the most important protection against electrical anomalies
 - Is not a backup power source!
 - Is a temporary source of clean power for sensitive systems during electrical outages (sag, brownout, blackout)
 - Must be sufficient to provide 5 to 30 minutes of temporary power to support a proper controlled shutting down of protected systems and starting and bringing up a backup generator online

- Surge protectors and suppressors only provide minimal spike protection – **not a substitute for a UPS**
Power Protection

Uninterrupted Power Supply (UPS) to protect against a short duration power failure.

2 types of UPS:

• **Online UPS** – It is in continual use because the primary power source goes through it to the equipment. It uses AC line voltage to charge a bank of batteries. When the primary power source fails, an inverter in the UPS will change DC of the batteries into AC.

• **Standby UPS** – It has sensors to detect for power failures. If there is a power failure, the load will be switched to the UPS. It stays inactive before a power failure, and takes more time than online UPS to provide power when the primary source fails.
Power Protection

Backup power source to protect against a long duration power failure, e.g. motor generator, another electrical substation, etc.

Voltage regulator and line conditioner to protect against unstable power supply.

Proper grounding for all electrical devices to protect against short circuit and static electricity, e.g. by using 3-prong outlets.

Cable shielding to avoid interference.

Power line monitor to detect for changes in frequency and voltage amplitude.

Emergency power off (EPO) switch to shut down the power quickly when required.

Electrical cables should be:

- placed away from powerful electrical motors and lighting to avoid electromagnetic interference.
- placed away from powerful electrical cables and fluorescent lighting to avoid radio frequency interference.
Heating, ventilation, and air conditioning (HVAC)

- Ideal temperature range for computer equipment is between 50°F – 80°F (10°C – 26°C)
 - Magnetic storage can be damaged at 100°F (38°C)
- Ideal humidity range for computer equipment is between 40% - 60%
 - Higher humidity causes condensation and corrosion
 - Lower humidity increases potential for ESD (static electricity)

Power supplies are on the Hot side
Heating, ventilation, and air conditioning (HVAC)

- Computer side panels of racks kept...
 - **Closed** to ensure proper airflow for cooling and ventilation
 - **Locked** for physical access control
 - **Blocked** by blanking panels in place of gaps in half-filled racks to reduce hot and cold air mixing which reduces cooling system efficiency
 - Emergency Power Off (EPO) switch should be installed near exists for manual emergency shutdown
 - HVAC is shutdown automatically by most gas-discharged fire suppression systems
 - HVAC should be dedicated, controlled and monitored to notify appropriate personnel when problems detected
 - If not need proper liaison with building manager to ensure everyone knows who to contact in case of emergency
Water damage

- And damage from liquids (in general) can occur from many sources including:
 - Leaking roofs
 - Pipe breakage
 - Firefighting efforts
 - Spilled drinks
 - Flooding
 - Tsunamis

- Wet electrical equipment and computers are a lethal hazard.

- **Preventative and detective controls** are necessary to make sure uncontrolled water does not destroy expensive assets or disrupt business operations
 - **Water diversion** barriers to prevent water from entering sensitive areas
 - **Water detection sensors and alarms** to detect presence of water and alert personnel in-time to prevent damage
Fire prevention, detection, & suppression

- Hazards associated with fires include:
 - Smoke,
 - Toxic vapors and materials
 - Water damage
 - Building collapse

- For a fire to burn it requires: **fuel, oxygen and heat**
 - Fire extinguishing and suppression systems remove one of these or break up the chemical reaction of among the three to fight fires

- Fires are classified by the type of fuel burned:

```
<table>
<thead>
<tr>
<th>Class</th>
<th>Fuel Description</th>
<th>Extinguishing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Common combustibles: E.g. paper, wood, furniture, clothing...</td>
<td>Water or soda acid</td>
</tr>
<tr>
<td>B</td>
<td>Burnable fuels: E.g. gasoline or oil</td>
<td>CO₂, soda acid or Halon substitutes</td>
</tr>
<tr>
<td>C</td>
<td>Electrical fires: E.g. computers or electronics</td>
<td>CO₂, or Halon substitutes - <em>Turn off electricity first!</em></td>
</tr>
<tr>
<td>D</td>
<td>Special fires: E.g. combustable metals</td>
<td>Special techniques, total immersion,...</td>
</tr>
<tr>
<td>K (or F)</td>
<td>Cooking oils or fats</td>
<td>Water mist or fire blankets</td>
</tr>
</tbody>
</table>
```

Class A, B, and C fires and primary extinguishing methods are covered on the CISSP exam!

D, K and F are not covered (Asia uses F not K)
1. **Heat-sensing fire detection systems**
 - Sense temperatures either
 - Exceeding a predetermined threshold level ("Fixed-temperature detectors")
 - Associated with lower false-alarm rate - preferred
 - Rapidly rising ("Rate-of-rise detectors")

2. **Flame-sensing fire detection systems**
 - Sense either flicker (pulsing) or infrared energy of flames
 - More expensive but provide rapid fire detection

3. **Smoke-sensing fire detection systems (smoke is a byproduct of fire)**
 1. **Photoelectric**: Senses variations in light intensity
 2. **Beam**: Senses when smoke interrupts beams of light (similar to photoelectric)
 3. **Ionizing**: Detects disturbances in normal ionization current of radioactive materials
 4. **Aspirating**: Detects minute amount of smoke in air drawn into sample chamber
Fire detection & suppression

2 main types of fire suppression (extinguishing) systems

1. Water-sprinkler systems (Class A, D, K fires)
 1. Wet-pipe (or closed-head)
 2. Dry-pipe
 3. Pre-action
 4. Deluge

2. Gas discharge systems (Class B and C fires)
 1. CO₂ Carbon dioxide (Class B and C fires)
 2. Soda acid (Class A and B fires)
 3. Gas-discharge (Class B and C fires)

Extinguisher type and fire classes it is for should be clearly marked on the extinguisher!

MIS 5206 Protecting Information Assets
Fire detection & suppression

Water-sprinkler fire suppression systems (4 main types)

1. **Wet-pipe (or closed-head)**
 - Most common and reliable
 - Pipes always charged with water under pressure and ready for activation
 - Fuse in nozzle melts or ruptures opening gate valve and releasing water
 - Disadvantages: Flooding due to pipe failure (e.g. due to freezing in cold weather) or nozzle/fuse failures

2. **Dry-pipe**
 - No standing water in the pipes
 - Activation opens clapper valve, water flows in the pipe as air is blown out
 - Helps protect from accidental flooding, provides time delay to (possibly) shutdown computer systems and/or power
 - Less efficient than wet-pipe system

3. **Pre-action** – *Combines dry-pipe and wet-pipe systems*
 - Pipes are initially dry. Triggering of heat sensor charges pipes with water (but does not discharge) and activates an alarm. When fusible link melts water is discharged, as in wet-pipe systems
 - Reduces risk of accidental discharge and enables manual intervention
 - Recommended systems for computer-equipment areas

4. **Deluge** – *Not typically used for computer-equipment areas*
 - Quickly delivers large volumes of water while operating like a dry-pipe system
Fire detection & suppression

Gas fire suppression systems (3 main types)

1. **Carbon dioxide (CO\textsubscript{2})**
 - Extinguishes fire by removing oxygen (from fire triangle)
 - Most effective against Class B and C fires
 - Removing oxygen makes it lethal and best suited for unmanned areas or with a delayed action with manual override in manned areas
 - Used in portable extinguishers – keep within 50ft of electrical equipment and near all exits

2. **Soda acid**
 - Suppresses flammable components with a chemical compound removing the fuel from the fire triangle
 - Most effective against Class A and B fires
 - NOT to be used for Class C fires because it is highly corrosive

3. **Gas-discharge**
 - Creates a chemical reaction that separates elements of the fire triangle
 - Most effective against Class B and C fires
 - Uses inert gases that mixes thoroughly with the air, spreads extremely quickly and will not damage computer equipment, nor leave a liquid nor solid residue
 - At concentrations of >10% these gases are harmful if inhaled
 - Degrades into toxic chemicals when used on fires that burn at temperatures >900°F (482°C)
 - Halon (which depleted ozone) was the preferred for gas-discharge fire suppression systems until 1994 when it was replaced with
 - FM-200 (the most effective), CEA-401 and CEA308, NAF-S-III, FE-13, Intergen, Argon or Argonite
Sources of environmental threats

• Severe weather
 – Likelihoods of hurricanes, tornadoes, high winds, severe thunderstorms, rain, snow, sleet and ice
 • Causing fires, flooding/water damage, structural damage, loss of utilities and communications, and hazards to personnel
 – Lightening strikes can discharge 100,000 amperes of electric current and heat the air to 54,000°F (30,000°C), in US starts ~10,000 fires/year

• Earthquakes and landslides
 – Can generate vibration, movement, falling objects
 – May weaken structural integrity and cause unstable buildings to collapse
Where is a good place for a backup data center?
Where is a good place for a backup data center?
Example based outdated internet infrastructure map intended to illustrate what is needed to plan data center disaster recovery site.
Site selection...

- **Climactic disasters**
 - Is it in a high likelihood area for hurricanes, earthquakes, flood plains, tornadoes or other natural threats?
 - Are evacuation routes available and what is the level of emergency preparedness?

- **Visibility**
 - Is it an easy target for crime, terrorism or vandalism? (adjacent to high-profile organization, government or military target?)
 - Does it have a low profile for avoiding unneeded attention? Is it possible to avoid external markings?

- **Accessibility**
 - Is it convenience to travel: airports and/or railroads? What are the local traffic patterns?
 - Is it close to emergency services: police stations, fire stations and hospitals

- **Utilities**
 - Does location in the power grid provide clean/stable power?
 - Are telecommunications supported by sufficient high-speed fiber optic network connections?
 - Are there multiple providers to provide redundant utilities?

- **Local Considerations**
 - What are the crime rates and adjacent neighborhoods?
 - Is it near hazard materials storage? Railroad freight lines? Airport flight paths?

- **Joint tenants**
 - Are they serious enough about security?
 - Should/would they share physical security responsibilities and costs?
Test Taking Tip

Keep track of your guesses

- OK to guess and move on if you don’t know answer

- Often in a standardized test, later questions on the same topic appear

- Remembering where you saw that topic earlier and if you guessed at the answer can make that information valuable
Quiz
Agenda

✔ Questions from Project Teams
✔ Physical and Environmental Security
✔ Physical Security
✔ Environmental Security
✔ Quiz