Protecting Information Assets - Unit\# 6b -

Cryptography, Public Key Encryption and Digital Signatures

Agenda

- Cryptography and Cryptanalysis
- Terminology
- Symmetric Cryptography
- Asymmetric Cryptography
- Hashing and Digital Signature
- Public Key Infrastructure
- Cryptanalysis Attacks
- Quiz

Cryptography

- Method of transmitting and storing data in a form that only those it is intended for can read and process
- An effective way of protecting sensitive information as it is transmitted through untrusted network communication paths or stored on media
- Complements physical and logical access controls

The etymology is Greek and means: "secret writing"

Where do you look for encryption related controls?

CLASS		FAMILY
Management	Risk Assessment	RA
Management	Planning	PL
Management	System and Services Acquisition	SA
Management	Certification, Accreditation, and Security Assessments	CA
Operational	Personnel Security	PS
Operational	Physical and Environmental Protection	PE
Operational	Contingency Planning	CP
Operational	Configuration Management	CM
Operational	Maintenance	MA
Operational	System and Information Integrity	SI
Operational	Media Protection	MP
Operational	Incident Response	IR
Operational	Awareness and Training	AT
Technical	Identification and Authentication	IA
Technical	Access Control	AC
Technical	Audit and Accountability	AU
Technical	System and Communications Protection	SC

CNTL NO.	CONTROL NAME		INITIAL CONTROL BASELINES		
			Low	MOD	HIGH
System and Communications Protection					
SC-1	System and Communications Protection Policy and Procedures	P1	SC-1	SC-1	SC-1
SC-2	Application Partitioning	P1	Not Selected	SC-2	SC-2
SC-3	Security Function Isolation	P1	Not Selected	Not Selected	SC-3
SC-4	Information in Shared Resources	P1	Not Selected	SC-4	SC-4
SC-5	Denial of Service Protection	P1	SC-5	SC-5	SC-5
SC-6	Resource Availability	P0	Not Selected	Not Selected	Not Selected
SC-7	Boundary Protection	P1	SC-7	$\begin{gathered} \mathrm{SC}-7(3)(4)(5) \\ (7) \\ \hline \end{gathered}$	$\begin{aligned} & \text { SC-7 (3) (4) (5) } \\ & (7)(8)(18)(21) \end{aligned}$
SC-8	Transmission Confidentiality and Integrity	P1	Not Selected	SC-8 (1)	SC-8 (1)
SC-9	Withdrawn	--	--	--	--
SC-10	Network Disconnect	P2	Not Selected	SC-10	SC-10
SC-11	Trusted Path	P0	Not Selected	Not Selected	Not Selected
SC-12	Cryptographic Key Establishment and Management	P1	SC-12	SC-12	SC-12 (1)
SC-13	Cryptographic Protection	P1	SC-13	SC-13	SC-13
SC-14	Withdrawn	--	--	--	--
SC-15	Collaborative Computing Devices	P1	SC-15	SC-15	SC-15
SC-16	Transmission of Security Attributes	P0	Not Selected	Not Selected	Not Selected
SC-17	Public Key Infrastructure Certificates	P1	Not Selected	SC-17	SC-17
SC-18	Mobile Code	P2	Not Selected	SC-18	SC-18
SC-19	Voice Over Internet Protocol	P1	Not Selected	SC-19	SC-19
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	P1	SC-20	SC-20	SC-20
SC-21	Secure Name/Address Resolution Service (Recursive or Caching Resolver)	P1	SC-21	SC-21	SC-21
SC-22	Architecture and Provisioning for Name/Address Resolution Service	P1	SC-22	SC-22	SC-22
SC-23	Session Authenticity	P1	Not Selected	SC-23	SC-23
SC-24	Fail in Known State	P1	Not Selected	Not Selected	SC-24
SC-28	Protection of Information at Rest	P1	Not Selected	SC-28	SC-28
SC-39	Process Isolation	P1	SC-39	SC-39	SC-39

SC-13 CRYPTOGRAPHIC PROTECTION

Control:
a. Determine the [Assignment: organization-defined cryptographic uses]; and
b. Implement the following types of cryptography required for each specified cryptographic use: [Assignment: organization-defined types of cryptography for each specified cryptographic use].
Discussion: Cryptography can be employed to support a variety of security solutions, including the protection of classified information and controlled unclassified information, the provision and implementation of digital signatures, and the enforcement of information separation when authorized individuals have the necessary clearances but lack the necessary formal access approvals. Cryptography can also be used to support random number and hash generation. Generally applicable cryptographic standards include FIPS-validated cryptography and NSAapproved cryptography. For example, organizations that need to protect classified information may specify the use of NSA-approved cryptography. Organizations that need to provision and implement digital signatures may specify the use of FIPS-validated cryptography. Cryptography is implemented in accordance with applicable laws, executive orders, directives, regulations, policies, standards, and guidelines.
Related Controls: $A C-2, A C-3, A C-7, A C-17, A C-18, A C-19, A U-9, A U-10, C M-11, C P-9, I A-3, I A-5$, IA -7, MA-4, MP-2, MP-4, MP-5, SA-4, SA-8, 7.

$\begin{aligned} & \text { CNTL } \\ & \text { NO. } \end{aligned}$	CONTROL NAME		INITIAL CONTROL BASELINES		
			LOW	MOD	HIGH
System and Communications Protection					
SC-1	System and Communications Protection Policy and Procedures	P1	SC-1	SC-1	SC-1
SC-2	Application Partitioning	P1	Not Selected	SC-2	SC-2
SC-3	Security Function Isolation	P1	Not Selected	Not Selected	SC-3
SC-4	Information in Shared Resources	P1	Not Selected	SC-4	SC-4
SC-5	Denial of Service Protection	P1	SC-5	SC-5	SC-5
SC-6	Resource Availability	P0	Not Selected	Not Selected	Not Selected
SC-7	Boundary Protection	P1	SC-7	$\begin{gathered} \mathrm{SC}-7(3)(4)(5) \\ (7) \end{gathered}$	$\begin{aligned} & \text { SC-7 (3) (4) (5) } \\ & (7)(8)(18)(21) \end{aligned}$
SC-8	Transmission Confidentiality and Integrity	P1	Not Selected	SC-8 (1)	SC-8 (1)
SC-9	Withdrawn	--	--	--	--
SC-10	Network Disconnect	P2	Not Selected	SC-10	SC-10
SC-11	Trusted Path	P0	Not Selected	Not Selected	Not Selected
SC-12	Cryptographic Key Establishment and Management	P1	SC-12	SC-12	SC-12 (1)
SC-13	Cryptographic Protection	P1	SC-13	SC-13	SC-13
SC-14	Withdrawn	--	--	---	--
SC-15	Collaborative Computing Devices	P1	SC-15	SC-15	SC-15
SC-16	Transmission of Security Attributes	P0	Not Selected	Not Selected	Not Selected
SC-17	Public Key Infrastructure Certificates	P1	Not Selected	SC-17	SC-17
SC-18	Mobile Code	P2	Not Selected	SC-18	SC-18
SC-19	Voice Over Internet Protocol	P1	Not Selected	SC-19	SC-19
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	P1	SC-20	SC-20	SC-20
SC-21	Secure Name /Address Resolution Service (Recursive or Caching Resolver)	P1	SC-21	SC-21	SC-21
SC-22	Architecture and Provisioning for Name/Address Resolution Service	P1	SC-22	SC-22	SC-22
SC-23	Session Authenticity	P1	Not Selected	SC-23	SC-23
SC-24	Fail in Known State	P1	Not Selected	Not Selected	SC-24
SC-28	Protection of Information at Rest	P1	Not Selected	SC-28	SC-28
SC-39	Process Isolation	P1	SC-39	SC-39	SC-39

SC-12 CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT

Control: Establish and manage cryptographic keys when cryptography is employed within the system in accordance with the following key management requirements: [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

Discussion: Cryptographic key management and establishment can be performed using manual procedures or automated mechanisms with supporting manual procedures. Organizations define key management requirements in accordance with applicable laws, executive orders, directives, regulations, policies, standards, and guidelines and specify appropriate options, parameters, and levels. Organizations manage trust stores to ensure that only approved trust anchors are part of such trust stores. This includes certificates with visibility external to organizational systems and certificates related to the internal operations of systems. [NIST CMVP] and [NIST CAVP] provide additional information on validated cryptographic modules and algorithms that can be used in cryptographic key management and establishment.
Related Controls: $A C-17, \underline{A U-9}, \underline{A U-10, ~ C M-3}, \underline{I A-3}, \underline{I A-7}, \underline{S A-4}, \underline{S A-8}, \underline{S A-9}, \underline{S C-8}, \underline{S C-11}, \underline{S C-12}, \underline{S C-}$ $13, \underline{S C-17}, \underline{S C-20}, \underline{\text { SC-37, SC-40 }}$, SI-3, SI-7.

Cryptanalysis

- The study of methods to break cryptosystems
- Often targeted at obtaining a key
- Attacks may be passive or active
- Kerckhoff's Principle
- The only secrecy involved with a cryptosystem should be the key
- Cryptosystem Strength
- How hard is it to determine the secret associated with the system?

Terminology

- Plaintext - is the readable version of a message
- Ciphertext - is the unreadable results after an encryption process is applied to the plaintext
- Cryptosystem - includes all the necessary components for encryption and decryption
- Algorithms
- Keys
- Software
- Protocols

Services of cryptosystems

- Confidentiality - Renders information unintelligible except by authorized entities
- Integrity - Data has not been altered in an unauthorized manner since it was created, transmitted, or stored
- Authentication - Verifies the identity of the user or system that created, requested or provided the information
- Authorization - On proving identity, the individual is provided with the key or password that will permit access to some resource
- Nonrepudiation - Ensure the sender cannot deny sending the information

Repudiation - the sender denying he sent the message

Cipher = encryption algorithm

2 main attributes combined in a cypher

1. Confusion: usually carried out through substitution
2. Diffusion: Usually carried out through transposition

Cipher = encryption algorithm

2 main attributes combined in a cypher

1. Confusion: usually carried out through substitution
2. Diffusion: Usually carried out through transposition

Example: Substitution cipher or algorithm

- A mono-alphabetic substitution cipher

> ABCDEFGHIJKLMNOPQRSTUVWXYZ ZYXWVUTSRQPONMLKJIHGFEDCBA "SECURITY" <=> "HVXFIRGB"

Cipher Disk

Outer wheel is for the plaintext alphabet Inner wheel is for ciphertext

When the outer wheel and inner wheel and are both aligned at the letter " A " (i.e. position zero), there is no encryption mapping the letters on the outer wheel to
 letters on the inner wheel

Secret

Tfdsfu

Ugetgv

Keyspace is the number of possible keys

Question: Assuming each key is equally likely (randomly distributed) how many random guesses would you have to make on average to find the key to decrypt the plaintext?
$>$ Answer: ~14, (28-1) = 27 and 27/2 = 13.5 which is approximately 14
$>$ Because the average of a uniform distribution is half
$>$ Recall 26 letters in the alphabet + "." and "-" = 28 , but we cannot use " 0 " as the key which gives us the original plaintext back the size of the alphabet

- This is important in cryptography
 because on average the number of attempts needed to successfully guess the key through brute forcing is half of the key space
- This is true of the simple cipher wheel as well as modern encryption schemes with very large key spaces

Linguistic cryptanalysis examples...

- Recognizing the beginning of the word
- Looking for letter pairs
- Looking at vowels

This form of cryptanalysis uses your knowledge of the English language

Linguistic cryptanalysis examples...

One form of linguistic cryptanalysis is frequency analysis of letters used in English Frequency analysis recognizes that different letters have different probabilities of frequencies of use in words:

Given a sentences written in the English language

- E, T, A and O are the most common
- Z, Q and X are rare
- TH, ER, ON, and AN are the most common pairs of letters (termed bigrams or digraphs)
- $\mathrm{SS}, \mathrm{EE}, \mathrm{TT}$, and FF are the most common repeats

Example: Substitution cipher or algorithm

- Standard Alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

- Cryptographic Alphabet:

DEFGHIJKLMNOPQRSTUVWXYZABC

- Plaintext:

LOGICAL SECURITY

- Ciphertext:

ORJLFDO VHFXULWB

Polyalphabetic Cipher

Ciphers can be made stronger, and frequency analysis made more difficult when more than one cipher alphabet is used

- For example, encrypt the plaintext message "SEND MONEY"
- Use the word "SECURITY" as the key, but repeat its use in the key to make it have as many letters as the plaintext:

Plaintext: SEND MONEY (10 characters including the space "_")
Key: SECURITYSE (10 characters)

Polyalphabetic Cipher

Plaintext: SEND MONEY (10 characters including the space " ") Key: SECURITYSE (10 characters)

1. Encrypt by rotating the inner wheel so that " S " in the word "SECURITY" aligns with "A" on the outer wheel

Now "S" in the word "SEND" on the outer wheel maps to the letter "l" on the inner wheel, so "l" is the ciphertext
2. Next, rotate the inner wheel so that " E " in the word "SECURITY" aligns with "A" on the outer wheel. Now "E" in the word "SEND" on the outer wheel maps to "I" on the inner wheel, so "I" is the ciphertext again, even though the plaintext is different than before

Ciphertext for "SEND MONEY" using the polyalphabetic key "SECURITY" is:

IIPXPUFJWA

Polyalphabetic ciphers make frequency analysis more difficult
Polyalphabetic substitution is another building block of cryptography

Random Polyalphabetic Cipher

What if we use a random polyalphabetic key that is as long as the message?

For example, let's say our plaintext is:
We intend to begin on the first of February unrestricted submarine warfare.

And the polyalphabetic key is a string of random characters as long as the message: ackwulsjwkblogbzcukn.kqubpnnefjvcebuymaclzvzmzwfbxpmmzqwmm.tejzf

Question: How would an attacker could attempt to crack this message? Is an attack possible?

Cipher = encryption algorithm

2 main attributes combined in a cypher

1. Confusion: usually carried out through substitution

- Let's look at another way to do substitution

2. Diffusion: Usually carried out through transposition

Harris, S. and Maymi, F. (2016) All-In-One CISSP Exam Guide, McGraw Hill Education

The translation of what we type into ASCII, and then into binary is what is sent in data packets across the network to other computers...
Binary - Decimal

0	0	0	0	0	0	0	0	$=0$
1	1	1	1	1	1	1	1	$=255$

ASCII - Decimal

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec Hex	Char	
0	0	Null	NUL	CTRL- $\$$	32	20	Space	64	40	6	96	60	
1	1	Start of heading	SCH	CTRL-A	33	21	1	65	41	A	97	61	a
2	2	Start of tent	STX	CTRL-B	34	22	1	66	42	8	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	4	67	43	C	99	63	c
4	4	End of xmit	EOT	CTRL-D	36	24	$\$$	68	44	D	100	64	d
5	5	Enquiry	ENQ	CTRL-E	37	25	$\%$	69	45	E	101	65	e

8 bits supports 256 numbers

ASCII Character Table

Hame	Hex	Dec
.(period)	2 E	046
0	30	048
1	31	049
2	32	050
3	33	051
4	34	052
5	35	053
6	36	054
7	37	055
8	38	056
9	39	057

Hame	Hex	Dec
A	41	065
B	42	066
C	43	067
D	44	068
E	45	069
F	46	070
G	47	071
H	48	072
I	49	073
J	$4 A$	074
K	$4 B$	075

Hame	Hex	Dec
L	4 C	076
M	4 D	077
N	4 E	078
O	4 F	079
P	50	080
Q	51	081
R	52	802
S	53	083
T	54	084
U	55	085
V	56	086

Hame	Hex	Dec
W	57	087
X	58	088
Y	59	089
Z	$5 A$	090

XOR - Exclusive OR

Creating "confusion" through substitution with a binary mathematical function called "exclusive OR", abbreviated as XOR
Message stream:
Keystream:
Ciphertext stream:

One-Time Pad a perfect encryption scheme

One-Time Pad Requirements

- Made up of truly random values
- Used only one time
- Securely distributed to its destination
- Secured at sender's and receiver's sites
- At least as long as the message

Harris, S. and Maymi, F. (2016) All-In-One CISSP Exam Guide, McGraw Hill Education

One-time pad -- Problems

- Must be perfectly random
- Pad must be as long as the message
- Must be used only once
- Skimp on any of these conditions, it becomes trivial to break your system
- Any software product claiming to use one-time pad
 is snake-oil.
- Computers are bad at generating truly random numbers

Cipher = encryption algorithm

2 main attributes combined in a cypher

1. Confusion: usually carried out through substitution

2. Diffusion: Usually carried out through transposition

Transposition

- Ancient example: scytale

A profit was
achieved by our
ACT unit

a profitwas achievedby ouractunit

0123456789
aprofitwas
achievedby
ouractunit

6025487139
tarifawpos eahvebdciy uortcinuat

0123456789
aprofitwas
achievedby
ouractunit

2 main attributes combined in a cypher

1. Confusion: usually carried out through substitution
2. Diffusion: Usually carried out through transposition

Examples of dichotomies in cryptography

- Symmetric versus Asymmetric
- Stream versus block
- 1-Way functions versus 2-Way functions

Symmetric versus asymmetric algorithms

- Symmetric cryptography
- Use a copied pair of symmetric (identical) secret keys
- The sender and the receive use the same key for encryption and decryption functions
- Asymmetric cryptography
- Also know as "public key cryptography"
- Use different ("asymmetric") keys for encryption and decryption
- One is called the "private key" and the other is the "public key"

Symmetric cryptography

Strengths:

- Much faster (less computationally intensive) than asymmetric systems.
- Hard to break if using a large key size.

Weaknesses:

- Requires a secure mechanism to deliver keys properly.
- Each pair of users needs a unique key, so as the number of individuals increases, so does the number of keys, possibly making key management overwhelming.
- Provides confidentiality but not authenticity or nonrepudiation.

Symmetric encryption uses the same keys.

Two types: Stream and Block Ciphers

- Stream Ciphers treat the message a stream of bits and performs mathematical functions on each bit individually
- Block Ciphers divide a message into blocks of bits and transforms the blocks one at a time

Symmetric Stream Ciphers

The sender and receiver must have the same key to generate the same keystream.
Harris, S. and Maymi, F. (2016) All-In-One CISSP Exam Guide, McGraw Hill Education

Symmetric versus asymmetric algorithms

- Symmetric cryptography
- Use a copied pair of symmetric (identical) secret keys
- The sender and the receive use the same key for encryption and decryption functions
- Asymmetric cryptography
- Also know as "public key cryptography"
- Use different ("asymmetric") keys for encryption and decryption
- One is called the "private key" and the other is the "public key"

Asymmetric cryptography

- Public and Private keys are mathematically related
- Public keys are generated from private key
- Private keys cannot be derived from the associated public key (if it falls into the wrong hands)
- Public key can be known by everyone
- Private key must be known and used only by the owner

Asymmetric cryptography is computational intensive and much slower than symmetric cryptography

Harris, S. and Maymi, F. (2016) All-In-One CISSP Exam Guide, McGraw Hill Education

Asymmetric cryptography

- Do not get confused and think the public key is only for encryption and private key is only for decryption!
- Each key type can be use used to encrypt and decrypt
- If data is encrypted with a private key it cannot be decrypted with the same private key (but it can be decrypted with the related public key)
- If data is encrypted with a public key it cannot be decrypted with the same public key (but it can be decrypted with the related private key)

Asymmetric cryptography

If the sender ("jill") encrypts data with her private key, the receiver ("Bill") must have a copy of Jill's public key to decrypt it

- By decrypting the message with Jill's public key Bill can be sure the message really came from Jill
- A message can be decrypted with a public key only if the message was encrypted with the corresponding private key
- This provides authentication because Jill is only the only one who is supposed to have her private key

If Bill (the receiver) wants to make sure Jill is the only one who can read his reply, he will encrypt the response with her public key

- Only Jill will be able to decrypt the message, because she is the only one who has the necessary private key
- This provides confidentiality because only Jill is able to decrypt the message with her private key

Asymmetric cryptography

Why would Bill (now the sender) choose to encrypt his reply to Jill with his private key instead of using Jill's public key?

- Authentication - Bill wants Jill to know that the message came from him and no one else
- If he encrypted the data with Jill's public key, it does not provide authenticity because anyone can get Jill's public key
- If he uses his private key to encrypt the data, then Jill can be sure the message came from him and no one else

Note: Symmetric keys do not provide authenticity - because the same key is used on both ends (using one of the secret keys does not ensure the message originated from a specific individual

Asymmetric cryptography

- If confidentiality is the most important security service, the sender would encrypt the file with the receiver's public key
- This is called a "secure message format" because it can only be decrypted by the person with the corresponding private key
- If authentication is most important, the sender would encrypt the data with his private key
- This provides assurance to the receiver that the only person who could have encrypted the data is the individual in possession of the private key
- If the sender encrypted the data with receivers public key, authentication is not provided because the public key is available to anyone
- Encrypting data with the senders private key is called an "open message format" because anyone with a copy of the corresponding public key can decrypt the message
- Confidentiality is not assured

Cryptographic algorithms and their functions

Elliptical curve cryptography (ECC) is a public key encryption technique (Asymmetric)

- Based on elliptic curve theory that can be used to create faster, smaller, and more efficient cryptographic keys
- ECC generates keys through the properties of the elliptic curve equation instead of the traditional method of generation as the product of very large prime numbers

Hybrid Encryption (a.k.a. "digital envelope")

Symmetric and asymmetric and algorithms are often used together

- Public key cryptography's asymmetric algorithm is used to create public and private keys for secure automated key distribution
- Symmetric algorithm is used to create secret keys for rapid encryption/decryption of bulk data

Hybrid Encryption

Symmetric algorithm uses a secret key to encrypt the message and the asymmetric key encrypts the secret key for transmission (SSL/TLS uses hybrid)

Public Key Management

Figure 9.1 Public-Key Cryptography

Stallings, W. (2014) Cryptography and Network Security

Quick review

1. If a symmetric key is encrypted with a receiver's public key, what security service is provided?

Quick review

1. If a symmetric key is encrypted with a receiver's public key, what security service is provided?

- Confidentiality: only the receiver's private key can be used to decrypt the symmetric key, and only the receiver should have access to this private key

Quick review

2. If data is encrypted with the sender's private key, what security services is provided?

Quick review

2. If data is encrypted with the sender's private key, what security services are provided?

- Authenticity of the sender and nonrepudiation. If the receiver can decrypt the encrypted data with the sender's public key, then receiver knows the data was encrypted with the sender's private key

Quick review

3. Why do we encrypt the message with the symmetric key rather than the asymmetric key?

Quick review

3. Why do we encrypt the message with the symmetric key rather than the asymmetric key?

- Because the asymmetric key algorithm is too slow

Session keys

Single-use symmetric keys used to encrypt messages between two users in an individual communication session

Session key

1) Tanya sends Lance her public key.
2) Lance generates a random session key and encrypts it using Tanya's public key.
3) Lance sends the session key, encrypted with Tanya's public key, to Tanya.
4) Tanya decrypts Lance's message with her private key and now has a copy of the session key.
5) Tanya and Lance use this session key to encrypt and decrypt messages to each other.

One-way Hash

- Assures message integrity

- A function that takes a variable-length string (i.e. message) and produces a fixedlength value called a hash value
- Does not use keys

1. Sender puts message through hashing function
2. Message digest generated
3. Message digest appended to the message
4. Sender sends message to receiver
5. Receiver puts message through hashing function
6. Receiver generates message digest value
7. Receiver compares the two message digests values. If they are the same, the message has not been altered

One-way hash example...

Testing the integrity of a file (e.g. program) downloaded from the internet...

One-way hash example...

Testing the integrity of a file (e.g. program) from the internet...

Image Name	Download	Size	Version	sha256sum
Kali 64 bit	HTTP I Torrent	$2.8 G$	2017.2	4556775 bfb 981 ae 64 a 3 cb 19 aa 0 b 73 e 8dcac6e4ba524f31c4bc14c9137b99725d

Is the Kali I downloaded the same Kali that was published?

One-way hash example...

```
* Windows PowerShell
\square
Windows PowerShell Microsoft Corporation. All rights reserved.
PS C:\Users\tue87168> help Get-FileHash
NAME
    Get-FileHash
SYNTAX 
    Get-FileHash -LiteralPath <string[]> [-Algorithm <string> {SHA1 | SHA256 | SHA384 | SHA512 | MACTripleDES | MD5 | RIPEMD160}]
    [<CommonParameters>]
    l}\begin{array}{l}{\mathrm{ Get-FileHash -InputStream <Stream> [-Algorithm <string> {SHA1 | SHA256 | SHA384 | SHA512 | MACTripleDES | MD5 | RIPEMD160}]}}\\{[<CommonParameters>] }
ALIASES
    None
REMARKS
    Get-Help cannot find the Help files for this cmdlet on this computer. It is displaying only partial help.
        To download and install Help files for the module that includes this cmdlet, use Update-Help.
        To view the Help topic for this cmdlet online, type: "Get-Help Get-FileHash -Online" or
            go to http://go.microsoft.com/fwlink/?LinkId=517145.
PS C:\Users\tue87168`
```

PowerShell|

One-way hash example...

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-5.1

Nindows Powershel

Copyright (C) 2015 Microsoft Corporation. All rights reserved.
PS C:\Users\tue87168> dir

Directory: C:\Users\tue87168

Mode	LastWriteTime			Length	Name
d-----	9/27/2016	11:28	AM		. oracle_jre_usage
	8/21/2016	10:57	AM		Benefits
d-r---	10/13/2017	8:35	AM		Contacts
d-r---	11/5/2017	8:48	PM		Desktop
d-r---	11/7/2017	8:52	PM		Documents
d-r	11/9/2017	2:31	PM		Downloads
d-r	10/13/2017	8:35	AM		Favorites
d-r	11/6/2017	9:33	AM		Google Drive
	11/7/2017	2:53	PM		Inte1
d-r	11/2/2017	8:16	AM		Links
d-	6/20/2017	5:07	PM		logs
d-----	8/10/2016	10:08	PM		MIS
d-r---	10/13/2017	8:35	AM		Music
d-r---	11/2/2017	8:16	AM		OneDrive
d-r---	11/9/2017	11:46	AM		Pictures
-	8/8/2016	11:20	AM		Roaming
d-r---	10/13/2017	8:35	AM		Saved Games
d-r---	10/13/2017	8:35	AM		Searches
	11/17/2016	11:20	AM		Tracing
d-r---	10/13/2017	8:35	AM		Videos

[^0]Directory: C:\Users\tue87168\Downloads

Mode	LastWriteTime	
	8/10/2017	10:55
-a----	8/10/2017	11:03
	6/12/2017	10:29
	9/27/2017	3:03
	10/3/2017	8:49
	11/11/2016	11:45
	11/9/2017	2:31

Length Name
674803712 CSET_8.0 (1). iso
674803712 CSET_8.0 (2).iso
674803712 CSET_8.0.1so
2421987328 en_project_professional_2016_x86_x64_dvd_6962236.iso
2421987328 en_vis10_professional_2016_x86_x64_dvd_6962139. iso 1469054976 Fedora-Live-Workstation-x86_64-23-10.iso 3020619776 kali-1inux-2017.2-amd64.iso

One-way hash example...

Image Name	Download	Size	Version	sha256sum
Kali 64 bit	HTTP I Torrent	2.8 G	2017.2	$4556775 \mathrm{bfb} 981 \mathrm{ae} 64 \mathrm{a} 3 \mathrm{cb} 19 \mathrm{aa} 0 \mathrm{~b} 73 \mathrm{e} 8 \mathrm{dcac} 6 \mathrm{e} 4 \mathrm{ba524f31c4bc14c9137b99725d}$4

2 Windows PowerShell
PS C:\Users\tue87168> cd Downloads
PS C:\Users\tue87168\Downloads> dir \#.iso
Directory: C:\Users\tue87168\Down1oads
-a----
-a----
$-a-----$
-a-----
-a----
-a-----
a---

LastWriteTime

8/10/2017 10:55 AM 8/10/2017 11:03 AM $\begin{array}{lll}6 / 12 / 2017 & 10: 29 \text { AM }\end{array}$ $\begin{array}{lr}\text { 9/27/2017 } & 3: 03 \mathrm{PM}\end{array}$ | $10 / 3 / 2017$ | $8: 49$ |
| ---: | ---: | $\begin{array}{rr}10 / 3 / 2017 & 8: 49 \\ 11 / 11 / 2016 & 11: 45 \\ \text { AM }\end{array}$ $\begin{array}{ll}1 / 11 / 2016 & 11: 45 \mathrm{AM} \\ \text { 11/9/2017 } & 2: 31 \mathrm{PM}\end{array}$

Length Name

674803712 CSET_8.0 (1).iso 674803712 CSET_8.0 (2).150 674803712 CSET_8.0.iso
2421987328 en_project_professional_2016_x86_x64_dvd_6962236.iso 2421987328 en_visio_professional_2016_x86_x64_dvd_6962139. iso 1469054976 Fedora-Live-Workstation-x86_64-23-10.iso 3020619776 kali-1inux-2017.2-amd64.iso

```
PS C:\Users \tue87168\Downloads> Get-FileHash kali-linux-2017.2-amd64.iso | Format-List
```

```
Algorithm : SHA256
```

Algorithm : SHA256
Hash : 4556775BFB981AE64A3CB19AA0B73E8DCAC6E4BA5 24F31C4BC14C9137B99725D
Path : C:\Users\tue87168\Downloads\kali-1inux-2017.2-amd64.iso
PS C:\Users\tue87168\Down1oads> _

```

\section*{One-way hash example...}
(2) Windows PowerShell
-

\section*{5 C: \\ ```
-a-----
```}

Directory: C:\Users\tue87168\Downloads

Notice the amount of difference resulting from a 1 character change!
LastWriteTime
11/9/2017 \(\quad\) 3:04 PM
Length Name
15 MIS5206-IsGood.txt

PS C: \Users\tue87168\Downloads> type MIS5206-IsGood.txt MIS5206 is good
PS C:\Users\tue87168\Downloads> Get-FileHash MIS5206-IsGood.txt | Format-List

Algorithm : SHA256
Hash
: E6F05 3ADE3857C0EDC2896B229D0B91D4752B2D9D8C9BD4B2A45A4ACCB3999DD
: C:\Users\tue87168\Downloads\MIS5206-IsGood.txt

PS C:\Users\tue87168\Downloads> type MIS5 206-IsGood.txt
MIS5 206 is goop
PS C: \Users \tue87168 \Downloads> Get-FileHash MIS5206-IsGood.txt | Format-List

Algorithm : SHA256
Hash : 877B45EA5 D40D98FF8D1ABD919E154F446FEA11387DBB13DDEE448F9932928A5
Path : C:\Users\tue87168\Downloads\MIS5206-IsGood.txt

\section*{Digital Signature}
- A hash value encrypted with the sender's private key
- The act of signing means encrypting the message's hash value with the private key

Harris, S. and Maymi, F. (2016) All-In-One CISSP Exam Guide, McGraw Hill Education

\section*{Summary: Symmetric Algorithms}
\begin{tabular}{|l|l|l|l|}
\hline Name & Key Length (bits) & Block Size (bits) & Notes \\
\hline DES & \(56(56+8\) parity) & 64 & Replaced by 3DES \\
\hline 3DES & 56,112, or \(168(+8,16,24\) parity) & 64 & Replaced by AES \\
\hline Blowfish & 32 to 448 & 64 & Replaced by Twofish \\
\hline TwoFish & 128,192 , or 256 & 128 & Slower than AES. \\
\hline AES (Rijandel) & 128,192, or 256 & 128 & FIPS 197 \\
\hline RC4 & Stream & No longer in use \\
\hline (usually 40 to 256\()\) & Very Strong \\
\hline RC5 & Variable (up to 2048) & 32,64, or 128 & Based on RC5. (RSA) \\
\hline RC6 & \begin{tabular}{l}
128,192, and 256 bits up to 2040- \\
bits
\end{tabular} & 128 & \\
\hline
\end{tabular}

Summary: Asymmetric Algorithms
(primarily used for key transport/exchange)
- RSA - is the Public Key Cryptography Standard \#1 (PKCS)
- Diffie-Hellman
- El Gamal
- Elliptic Curve Cryptography
- ECDH
- ECDSA

\section*{Summary: Hashing Algorithms (Integrity)}
\begin{tabular}{|l|l|l|l|l|}
\hline & Hash Size (bits) & Block Size (bits) & Rounds & Strength \\
\hline MD5 & 128 & 512 & 64 & Weak - Password Files \\
\hline SHA-0 & 160 & 512 & 80 & Weak \\
\hline SHA-1 & 160 & 512 & 80 & \begin{tabular}{l}
Generally not recommended for Federal \\
Systems - Refer to NIST SP800-131A for \\
allowable uses.
\end{tabular} \\
\hline SHA-2 (224 or 256) & 224 or 256 & 512 & 64 & Acceptable, 256 recommended \\
\hline SHA-2 (384 or 512) & 384 or 512 & 1024 & 80 & \begin{tabular}{l}
All of the following are acceptable. \\
\hline SHA-512/224
\end{tabular} 2224 \\
\hline RHA-512/256 & 256 & 1024 & 80 & Refer to NIST SP800-57 Part 1 \\
\hline SHA3-224 & 224 & 1024 & 80 & \\
\hline SHA3-256 & 256 & 1600 & 1152 & \\
\hline SHA3-384 & 384 & 1600 & 1088 & \\
\hline SHA3-512 & 512 & 1600 & 832 & \\
\hline
\end{tabular}

\section*{Reasons to Use Cryptography}
\begin{tabular}{|ll|}
\hline \multicolumn{1}{|c|}{ Reason } & \multicolumn{1}{c|}{ How achieved } \\
\hline Confidentiality & The message can be encrypted \\
\hline Integrity & The message can be hashed and/or digitally signed \\
\hline Authentication & The message can be digitally signed \\
\hline Nonrepudiation & The message can be digitally signed \\
\hline
\end{tabular}

\section*{PKI Components}

Digital Certificates

- Contains Public Key identity and verification info

Certificate Authorities (CA)
- Trusted entities that issues certificates

Registration Authorities (RA)
- Verify identity for certificate requests

\section*{Certificate Revocation List (CRL)}
- A list of digital certificates that have been revoked by the issuing Certificate Authority (CA) before their scheduled expiration date and should no longer be trusted

\section*{Examples of Cryptanalysis Attacks}
- Brute force
- Trying all key values in the keyspace
- Frequency Analysis
- Guess values based on linguistic analysis of frequency of occurrence of letters
- Dictionary Attack
- Find plaintext based on common words
- Replay Attack
- Repeating previous known values
- Known Plaintext
- Format or content of plaintext available
1. The review of router access control lists should be conducted during:
a. An environmental review
b. A network security review
c. A business continuity review
d. A data integrity review
1. The review of router access control lists should be conducted during:
a. An environmental review
b. A network security review
c. A business continuity review
d. A data integrity review
2. During an audit of a telecommunication system, an IS auditor finds that the risk of intercepting data transmitted to and from remote sites is very high. The MOST effective control for reducing this exposure is:
a. Encryption
b. Callback modems
c. Message authentication
d. Dedicated Leased lines
2. During an audit of a telecommunication system, an IS auditor finds that the risk of intercepting data transmitted to and from remote sites is very high. The MOST effective control for reducing this exposure is:
a. Encryption
b. Callback modems
c. Message authentication
d. Dedicated Leased lines

\section*{Quiz}
3. A digital signature contains a message digest to:
a. Show if the message has been altered after transmission
b. Define the encryption algorithm
c. Confirm the identity of the originator
d. Enable message transmission in a digital format
3. A digital signature contains a message digest to:
a. Show if the message has been altered after transmission
b. Define the encryption algorithm
c. Confirm the identity of the originator
d. Enable message transmission in a digital format

\section*{Quiz}
4. Digital signatures require the:
a. Signer to have a public key and the receiver to have a private key
b. Signer to have a private key and the received to have a public key
c. Signer and receiver to have a public key
d. Signer and receiver to have a private key
4. Digital signatures require the:
a. Signer to have a public key and the receiver to have a private key
b. Signer to have a private key and the received to have a public key
c. Signer and receiver to have a public key
d. Signer and receiver to have a private key

\section*{Quiz}
5. When using public key encryption to ensure confidentiality of data being transmitted across a network:
a. Both the key used to encrypt and decrypt the data are public
b. The key used to encrypt is private, but the key used to decrypt the data is public
c. The key used to encrypt is public, but the key used to decrypt the data is private
d. Both the key used to encrypt and decrypt the data are private
5. When using public key encryption to ensure confidentiality of data being transmitted across a network:
a. Both the key used to encrypt and decrypt the data are public
b. The key used to encrypt is private, but the key used to decrypt the data is public
c. The key used to encrypt is public, but the key used to decrypt the data is private
d. Both the key used to encrypt and decrypt the data are private

\section*{Quiz}
6. During an audit of an enterprise that is dedicated to e-commerce, the IS manager states that digital signatures are used when receiving communications from customers. To substantiate this, an IS auditor must prove that which of the following is used?
a. A biometric, digitized and encrypted parameter with the customer's public key
b. A hash of the data that is transmitted and encrypted with the customer's private key
c. A hash of the data that is transmitted and encrypted with the customer's public key
d. The customer's scanned signature encrypted with the customer's public key
6. During an audit of an enterprise that is dedicated to e-commerce, the IS manager states that digital signatures are used when receiving communications from customers. To substantiate this, an IS auditor must prove that which of the following is used?
a. A biometric, digitized and encrypted parameter with the customer's public key
b. A hash of the data that is transmitted and encrypted with the customer's private key
c. A hash of the data that is transmitted and encrypted with the customer's public key
d. The customer's scanned signature encrypted with the customer's public key

\section*{Quiz}
7. Email message authenticity and confidentiality is BEST achieved by signing the message using the:
a. Sender's private key and encrypting the message using the receiver's public key
b. Sender's public key and encrypting the message using the receiver's private key
c. Receiver's private key and encrypting the message using the sender's public key
d. Receiver's public key and encrypting the message using the sender's private key
7. Email message authenticity and confidentiality is BEST achieved by signing the message using the:
a. Sender's private key and encrypting the message using the receiver's public key
b. Sender's public key and encrypting the message using the receiver's private key
c. Receiver's private key and encrypting the message using the sender's public key
d. Receiver's public key and encrypting the message using the sender's private key

\section*{Quiz}
8. Which of the following effectively verify the originator of a transaction?
a. Using a secret password between the originator and the receiver
b. Encrypting the transaction with the receiver's public key
c. Using a portable document format (PDF) to encapsulate transaction content
d. Digitally signing the transaction with the source's private key
8. Which of the following effectively verify the originator of a transaction?
a. Using a secret password between the originator and the receiver
b. Encrypting the transaction with the receiver's public key
c. Using a portable document format (PDF) to encapsulate transaction content
d. Digitally signing the transaction with the source's private key

\section*{Quiz}
9. Which of the following is the MOST effective type of antivirus software to detect an infected application?
a. Scanners
b. Active monitors
c. Hash-based integrity checkers
d. Vaccines
9. Which of the following is the MOST effective type of antivirus software to detect an infected application?
a. Scanners
b. Active monitors
c. Hash-based integrity checkers
d. Vaccines

\section*{Agenda}
\(\checkmark\) Cryptography and Cryptanalysis
\(\checkmark\) Terminology
\(\checkmark\) Symmetric Cryptography
\(\checkmark\) Asymmetric Cryptography
\(\checkmark\) Hashing and Digital Signature
\(\checkmark\) Public Key Infrastructure
\(\checkmark\) Cryptanalysis Attacks
\(\checkmark\) Quiz

\section*{Protecting Information Assets - Unit\# 6b -}

\section*{Cryptography, Public Key Encryption and Digital Signatures}```

[^0]: PS C:\Users\tue87168> cd Downloads S C:\Users\tue87168\Downloads> dir \#.iso

