
10/25/21

1

MIS 5211.001
Week 9

1

¨ Web Application Security

MIS 5211.001 2

2

MIS 5211.001 3

3

10/25/21

2

¨ First (and nearly only) Rule

Never Trust User Input

MIS 5211.001 4

4

¨ For web application security and web
application penetration testing

Owasp.org

MIS 5211.001 5

5

¨ OWASP stands for the Open Web Application
Security Project

¨ Founded in 2001 as a charitable organization
dedicated to improving Web Application
Security

¨ Creators and publishers of the OWASP top 10
¨ Hosts numerous Web App tools and projects

MIS 5211.001 6

6

10/25/21

3

¨ Documentation
¨ Software

¡ ZAP: Zed Attack Proxy
¡ Web Testing Environment
¡ Juice Shop

¨ Cheat sheets

MIS 5211.001 7

7

¨ Deliberately insecure web app
¨ Demonstrates the flaws of the Top 10 and more
¨ Can be reconfigured for custom purpose

MIS 5211.001 8

8

¨ Google Chrome
¡ Tamper Chrome
¡ Postman and Postman Interceptor
¡ Developer Tools

¨ Mozilla Firefox
¡ Tamper Data for FF Quantum
¡ Web Developer Tools

MIS 5211.001 9

9

10/25/21

4

MIS 5211.001 10

10

MIS 5211.001 11

11

Access control enforces policy such that users cannot act
outside of their intended permissions. Failures typically
lead to unauthorized information disclosure,
modification, or destruction of all data or performing a
business function outside the user's limits.

MIS 5211.001 12

12

10/25/21

5

¨ Deny access to resources by default
¨ Access controls specific to user and group rather than

simply allowing logged-in users equal access
¨ Model access controls should enforce record ownership

rather than accepting that the user can create, read,
update, or delete any record.

¨ Log access control failures, alert admins when appropriate
(e.g., repeated failures).

¨ Rate limit API and controller access to minimize the harm
from automated attack tooling.

MIS 5211.001 13

13

The first thing is to determine the protection needs of data
in transit and at rest. For example, passwords, credit card
numbers, health records, personal information, and
business secrets require extra protection.
¨ Is any data transmitted in clear text?
¨ Are any old or weak cryptographic algorithms or

protocols used either by default or in older code?
¨ Are default crypto keys in use, weak crypto keys

generated or re-used, or is proper key management or
rotation missing? Are crypto keys checked into source
code repositories?

MIS 5211.001 14

14

¨ Classify data processed, stored, or transmitted by an
application. Identify which data is sensitive according
to privacy laws, regulatory requirements, or business
needs.

¨ Don't store sensitive data unnecessarily. Discard it as
soon as possible or use PCI DSS compliant tokenization
or even truncation. Data that is not retained cannot be
stolen.

¨ Make sure to encrypt all sensitive data at rest.
¨ Ensure up-to-date and strong standard algorithms,

protocols, and keys are in place; use proper key
management.

MIS 5211.001 15

15

10/25/21

6

¨ Unvalidated input, which contains malicious content, is
accepted by the application

¨ Many different types of injection attacks, including
¡ Code
¡ Scripts

ú Commands which can be executed in the victim’s browser
¡ SQL

ú Database commands that can access or alter data
¡ OS commands

ú Submits operating system commands that run on the web
application server

MIS 5211.001 16

16

¨ Validate data on server; don’t rely on client-side
validation

¨ Whitelist input
¨ Use appropriate APIs
¨ For any residual dynamic queries, escape special

characters using the specific escape syntax for that
interpreter.

MIS 5211.001 17

17

Insecure design is a broad category representing
different weaknesses, expressed as “missing or
ineffective control design.”
Secure design is a culture and methodology that
constantly evaluates threats and ensures that code is
robustly designed and tested to prevent known attack
methods.
Secure software requires a secure development
lifecycle, some form of secure design pattern, paved
road methodology, secured component library,
tooling, and threat modeling.

MIS 5211.001 18

18

10/25/21

7

¨ Establish and use a secure development lifecycle
¨ Establish and use a library of secure design

patterns or paved road ready to use components
¨ Use threat modeling for critical authentication,

access control, business logic, and key flows
¨ Integrate security language and controls into user

stories

MIS 5211.001 19

19

¨ Pages, ports, services not secured against unauthenticated
access
¡ e.g. directory listings allowed in app, which lets attackers

scan for files
¨ Unnecessary features enabled
¨ Error messages provide details about app infrastructure

¡ e.g. versions of libraries used might be displayed in an error
message, which would allow attacker to search for known
vulnerabilities in those libraries

MIS 5211.001 20

20

¨ Servers and environments should be hardened via
automated processed to ensure no step is left out

¨ Remove unneeded features

MIS 5211.001 21

21

10/25/21

8

¨ If you do not know the versions of all components you use (both
client-side and server-side). This includes components you
directly use as well as nested dependencies.

¨ If the software is vulnerable, unsupported, or out of date. This
includes the OS, web/application server, database management
system (DBMS), applications, APIs and all components, runtime
environments, and libraries.

¨ If you do not scan for vulnerabilities regularly and subscribe to
security bulletins related to the components you use.

¨ If you do not fix or upgrade the underlying platform, frameworks,
and dependencies in a risk-based, timely fashion.

¨ f software developers do not test the compatibility of updated,
upgraded, or patched libraries.

¨ If you do not secure the components’ configurations (see
A05:2021-Security Misconfiguration).

MIS 5211.001 22

22

¨ Remove unused dependencies, unnecessary
features, components, files, and documentation.

¨ Continuously inventory the versions of both client-
side and server-side components

¨ Only obtain components from official sources over
secure links.

¨ Monitor for libraries and components that are
unmaintained or do not create security patches for
older versions.

MIS 5211.001 23

23

Confirmation of the user's identity, authentication, and session
management is critical to protect against authentication-related
attacks.
There may be authentication weaknesses if the application:
¨ Permits automated attacks such as credential stuffing, where

the attacker has a list of valid usernames and passwords.
¨ Permits brute force or other automated attacks.
¨ Permits default, weak, or well-known passwords, such as

"Password1" or "admin/admin".
¨ Uses weak or ineffective credential recovery and forgot-

password processes, such as "knowledge-based answers,"
which cannot be made safe.

¨ Uses plain text, encrypted, or weakly hashed passwords
data stores

MIS 5211.001 24

24

10/25/21

9

¨ Where possible, implement multi-factor authentication to prevent
automated credential stuffing, brute force, and stolen credential
reuse attacks.

¨ Do not ship or deploy with any default credentials, particularly for
admin users.

¨ Implement weak password checks, such as testing new or changed
passwords against the top 10,000 worst passwords list.

¨ Align password length, complexity, and rotation policies
¨ Ensure registration, credential recovery, and API pathways are

hardened against account enumeration attacks by using the same
messages for all outcomes.

¨ Limit or increasingly delay failed login attempts but be careful not
to create a denial-of-service scenario. Log all failures and alert
administrators when credential stuffing, brute force, or other
attacks are detected.

MIS 5211.001 25

25

Software and data integrity failures relate to code and
infrastructure that does not protect against integrity
violations. An example of this is where an application
relies upon plugins, libraries, or modules from
untrusted sources, repositories, and content delivery
networks (CDNs).

MIS 5211.001 26

26

¨ Use digital signatures or similar mechanisms to
verify the software or data is from the expected
source and has not been altered.

¨ Ensure libraries and dependencies, such as npm or
Maven, are consuming trusted repositories.

¨ Ensure that there is a review process for code and
configuration changes

MIS 5211.001 27

27

10/25/21

10

This category is to help detect, escalate, and respond to active
breaches.
Insufficient logging, detection, monitoring, and active response occurs
any time:
¨ Auditable events, such as logins, failed logins, and high-value

transactions, are not logged.
¨ Warnings and errors generate no, inadequate, or unclear log

messages.
¨ Logs of applications and APIs are not monitored for suspicious

activity.
¨ Logs are only stored locally.
¨ Appropriate alerting thresholds and response escalation processes

are not in place or effective.
¨ Penetration testing and scans by dynamic application security

testing (DAST) tools do not trigger alerts.

MIS 5211.001 28

28

¨ Ensure all login, access control, and server-side input
validation failures can be logged with sufficient user context
to identify suspicious or malicious accounts and held for
enough time to allow delayed forensic analysis.

¨ Ensure that logs are generated in a format that log
management solutions can easily consume.

¨ Ensure log data is encoded correctly to prevent injections or
attacks on the logging or monitoring systems.

¨ Ensure high-value transactions have an audit trail with
integrity controls to prevent tampering or deletion, such as
append-only database tables or similar.

¨ DevSecOps teams should establish effective monitoring and
alerting such that suspicious activities are detected and
responded to quickly.

¨ Establish or adopt an incident response and recovery plan

MIS 5211.001 29

29

SSRF flaws occur whenever a web application is
fetching a remote resource without validating the
user-supplied URL. It allows an attacker to coerce the
application to send a crafted request to an unexpected
destination, even when protected by a firewall, VPN,
or another type of network access control list (ACL).

MIS 5211.001 30

30

10/25/21

11

Network Layer
¨ Segment remote resource access functionality in

separate networks to reduce the impact of SSRF
¨ Enforce “deny by default” firewall policies or network

access control rules to block all but essential intranet
traffic.

Application Layer
¨ Sanitize and validate all client-supplied input data
¨ Enforce the URL schema, port, and destination with a

positive allow list
¨ Do not send raw responses to clients
¨ Disable HTTP redirections

MIS 5211.001 31

31

¨ Local groups that sponsor events and speakers
¨ Foster collaboration among developers and security

staff
¨ https://owasp.org/www-chapter-philadelphia/
¨ https://www.meetup.com/OWASP-Philadelphia/

MIS 5211.001 32

32

¨ The OWASP Foundation
¡ https://www.owasp.org
¡ https://owasp.org/www-project-top-ten/

MIS 5211.001 33

33

https://owasp.org/www-chapter-philadelphia/
https://www.meetup.com/OWASP-Philadelphia/
https://www.owasp.org/
https://owasp.org/www-project-top-ten/

10/25/21

12

¨ Over 60 to date
¨ Cover a broad number of security issues
¨ https://cheatsheetseries.owasp.org/

MIS 5211.001 34

34

¨ What is a Web Browser?
¡ Rendering Engine
¡ JavaScript Engine
¡ Network communications layer
¡ …

¨ May also include
¡ Add-Ins
¡ Browser Helper Objects
¡ APIs to/for other applications

MIS 5211.001 35

35

¨ Why are we talking about this?
¡ Browser are fairly complicated
¡ Browsers have many sub-components and features
¡ Browsers need to understand many different forms

of character encoding
¨ All of this gives us something to work with

when attacking Web Applications

¨ Good reference for details
¨ http://taligarsiel.com/Projects/howbrowsers

work1.htm
MIS 5211.001 36

36

https://cheatsheetseries.owasp.org/
http://taligarsiel.com/Projects/howbrowserswork1.htm

10/25/21

13

¨ So, all of this is interesting, but does that have
to do with penetration testing

¨ Or, to put it another way. How de we exploit
these issues?

¨ First step:

Intercepting Proxies

MIS 5211.001 37

37

¨ In this instance, an intercepting proxy is
software that acts as a server and sits between
the web browser and your internet connection

¨ Examples
¡ Burp Suite
¡ Webscarab
¡ Paros

MIS 5211.001 38

38

¨ For this course
¨ Monitor and record ONLY UNLESS YOU ARE

ON A TEST SITE YOU OWN
¨ Do not inject or alter any traffic unless you

personally own the web site.
¨ We’ll save changing traffic in the next course

MIS 5211.001 39

39

10/25/21

14

¨ Start Burp Suite by logging in to Kali and
selecting Burp Suite from:

¨ Kali Linux>Web Applications>Web
Application Proxies>burpsuite

¨ For those interested in a video, here is a link to
a YouTube video I found useful:

¨ https://www.youtube.com/watch?v=G3hpAe
oZ4ek

¨ There are many others

MIS 5211.001 40

40

MIS 5211.001 41

41

¨ Once burpsuite is running, you will need to
start and configure a browser

¨ Kali’s web browser is an adaptation of Firefox
¨ After starting the browser, navigate to

preferences
¨ And select it

MIS 5211.001 42

42

https://www.youtube.com/watch?v=G3hpAeoZ4ek

10/25/21

15

¨ Navigate to the
Network Tab
and select
settings… for
Connection

MIS 5211.001 43

43

¨ Change selection from “Use system proxy
settings” to “Manual proxy configuration and
enter “127.0.0.1” for “HTTP Proxy” and “8080” for
“Port”

¨ Also, select check box for “Use this proxy server
for all protocols”

¨ Delete reference to localhost and 127.0.0.1 from the
no proxy list

¨ Select “OK” when done
¨ Browser is now setup to use burpsuite
¨ See next slide for example

MIS 5211.001 44

44

MIS 5211.001 45

45

10/25/21

16

MIS 5211.001 46

46

¨ In browser, navigate to google.com
¨ Browser will hang and look busy
¨ Select the “Proxy” tab in burpsuite
¨ Burpsuite is waiting for you, select forward

MIS 5211.001 47

47

¨ Select “I understand the Risks” and follow
prompts to add an exception

MIS 5211.001 48

48

10/25/21

17

MIS 5211.001 49

49

¨ You may have to hit forward a number of times
¨ You may want to click “Intercept is on” to turn

it off and save hitting the forward button
¨ Eventually, all traffic is forwarded.
¨ Now, select “HTTP history” and see what you

have

MIS 5211.001 50

50

¨ Your traffic

MIS 5211.001 51

51

10/25/21

18

MIS 5211.001 52

52

MIS 5211.001 53

53

¨ Under “Repeater”,
select “Action”,
then select “Save
Entire History”

MIS 5211.001 54

54

10/25/21

19

¨ Restart burpsuite and turn intercept off
¨ Now navigate to temple.edu and look around

the sitetemple.edu
¨ Look over the results

MIS 5211.001 55

55

MIS 5211.001 56

56

¨ What can we tell from this?
¨ First we can see what we are telling temple

about us
¡ Web Browser is Iceweasel, a derivative of Firefox
¡ What versions we are running
¡ Cookies
¡ What exactly is If-None-Match: “1414416188-1”?

MIS 5211.001 57

57

10/25/21

20

¨ As Darth Vader says “Come to the Dark Side,
We’ve got Cookies”

¨ Or worse “Hex”

MIS 5211.001 58

58

¨ Note: There’s both a request and a response
tab.

MIS 5211.001 59

59

¨ Google Adds

¨ Other outside references

MIS 5211.001 60

60

10/25/21

21

¨ A few things to look at

MIS 5211.001 61

61

¨ If this was a real Web App Test
¡ Navigate the web site recording everything
¡ Review looking for interesting leads to follow
¡ Set Proxy to crawl site

ú (DO NOT DO THIS FOR THIS COURSE UNLESS YOU
ARE ON A TEST SITE YOU OWN)

MIS 5211.001 62

62

¨ This is the “Free”
version of burpsuite

¨ Some of the more
interesting features
are turned off or
limited
¡ Scanner
¡ Intruder

http://portswigger.net/burp/d
ownload.html

MIS 5211.001 63

63

http://portswigger.net/burp/download.html

10/25/21

22

¨ We covered just one proxy
¨ Different proxies have different strengths and

weaknesses
¨ For instance, Webscarab will flag potential XSS

automatically
¨ Also, OWASPs ZAP Tool (Zed Attack Proxy)

has many of the features only available in the
Pro version of BurpSuite

MIS 5211.001 64

64

¨ In Internet Explorer
¡ F12 Developer Tools
¡ Allows user to at least see the code loaded in

browser
¡ Often worth looking at as developers sometimes

leave comments

MIS 5211.001 65

65

¨ Using an Intercepting Proxy, look at a Website
¡ Choose a site that interests you

¨ Review what you find and create an executive
summary and three page PowerPoint as if you
were reporting out for an initial Pen Test

¨ Remember – Do not alter any data – Monitor
and Record Only

MIS 5211.001 66

66

10/25/21

23

¨ Before next week
¡ Download SecurityShepherd

ú https://github.com/OWASP/SecurityShepherd/releas
es

¡ Download Security Dojo
ú https://sourceforge.net/projects/websecuritydojo/

¡ Plan for next week will be to walk through some of
the exploits live, so get both Shepherd and Dojo
working on your system

MIS 5211.001 67

67

MIS 5211.001 68

68

https://github.com/OWASP/SecurityShepherd/releases
https://sourceforge.net/projects/websecuritydojo/

