Unit \#4

MIS5214
Case Study 1 and Cryptography

Agenda

- Case Study 1
- Cryptography terminology
- Symmetric Key Cryptography
- Symmetric stream cryptography
- Symmetric block cryptography
- Key sharing problem
- Public Key Cryptography
- Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
- RSA algorithm
- Hybrid-Cryptography
- Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- Brief review: Hashing \& Digital Signatures

Case 1 Exercise: Draw a logical network diagram for the Titan System adding in graphical elements that illustrate the system boundary, interconnections and data flow

You can use: https://app.diagrams.net/ , another graphic drawing program, or PowerPoint
Use your drawing to help you answer the following questions:

1. What was the specific attack vector(s) used by attacker?
2. What failings existed in the following areas?

- IT Governance
- End users
- Information technology services
- Information security
- Incident response

What should Margrete Raaum do next?

	Preventive Controls	Detective Controls	Corrective/Responsive Controls
IT Governance			

Incident Response

Draw a logical network diagram with graphical elements illustrating the system boundary, interconnections and data flow

Figure 1A typical grid architecture.

A High Performance Computing Cluster Under Attack: The Titan Incident

What was the specific attack vector(s) used by attacker:

1. ?
2. ?
3. ?
4. ?
5. ?
6. ?

Figure 1A typical grid architecture

Figure 2 Geographic dispersion of Nordic DataGrid facility Tier-1 clusters.

A High Performance Computing Cluster Under Attack: The Titan Incident

Specific attack vector used by attacker:

1. Attacker obtained valid usernames and password combinations from a system in Spain that had a research agreement with University of Oslo (UiO)
2. Attacker accessed the Titan cluster as a research user using the valid credentials that were "harvested" from the previously compromised system in Spain
3. The attacker used a local Linux system exploit (CVE-20103847 GNU C library dynamic linker - '\$ORIGIN' Expansion) to gain root administrative privileges on the Titan system (https://cwe.mitre.org/data/definitions/59)
4. Once administrative privileges were obtained, the attacker modified the SSH system files to collect the usernames and passwords of other end-users as they accessed the grid
5. The attacker created at least one "backdoor", or method of accessing the system without relying on the compromised accounts
6. The newly stolen credentials were used to gain unauthorized access to other systems, and they may also have been sold on the black market

Figure 1A typical grid architecture.

Figure 2 Geographic dispersion of Nordic DataGrid facility Tier-1 clusters.

...the attacker modified SSH system files to collect the usernames and passwords of other end-users as they accessed the grid

Secure Shell (SSH) is a cryptographic network protocol for operating network services securely over an unsecured network

Common applications include remote command-line login and remote command execution, but any network service can be secured with SSH.

The most visible application of the protocol is for access to shell accounts on Unixlike operating systems, but is in limited use on Windows as well

What should Margrete Raaum do next?

	Preventive Controls	Detective Controls	Corrective/Responsive Controls
IT Governance			

Incident Response

What should Margrete Raaum do next?

	Preventive Controls	Detective Controls	Corrective/Responsive Controls
IT Governance	- Analyze stakeholder needs and risks associated with not meeting those needs - Educate staff and end users in security policies	- IT security audit of high-risk security processes - Security risk awareness	- Stakeholder communication plan - Response plan

What should Margrete Raaum do next?

	Preventive Controls	Detective Controls	Corrective/Responsive Controls
Incident Response	- Policy and procedure creation - Evaluate incident management capability	- Proactive monitoring and detection - Reactive detection and follow-up	- Investigate and respond (technical, managerial, and legal) - Incident reporting guidelines
IT Governance	- Analyze stakeholder needs and risks associated with not meeting those needs - Educate staff and end users in security policies	- IT security audit of high-risk security processes - Security risk awareness	- Stakeholder communication plan - Response plan

What should Margrete Raaum do next?

	Preventive Controls	Detective Controls	Corrective/Rsponsive Controls
Information Security	- Vulnerability scanning and Operating System (OS) Patching - Principle of least privilege - Multifactor-factor Authentication - Penetration tests	- File system integrity checks - Network IDS/IPS	- Review logs - Forensic analysis - Malware analysis
Incident Response	- Policy and procedure creation - Evaluate incident management capability	- Proactive monitoring and detection - Reactive detection and follow-up	- Investigate and respond (technical, managerial, and legal) - Incident reporting guidelines
IT Governance	- Analyze stakeholder needs and risks associated with not meeting those needs - Educate staff and end users in security policies	- IT security audit of high-risk security processes - Security risk awareness 5214 Security Architecture	- Stakeholder communication plan - Response plan

Agenda

\checkmark Team Project - It is not too early to get started...
\checkmark Case Study 1

- Cryptography terminology
- Symmetric Key Cryptography
- Symmetric stream cryptography
- Symmetric block cryptography
- Key sharing problem
- Public Key Cryptography
- Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
- RSA algorithm
- Hybrid-Cryptography
- Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- Brief review: Hashing \& Digital Signatures

Terminology

- Plaintext - is the readable version of a message
- Ciphertext - is the unreadable results after an encryption process is applied to the plaintext
- Cryptosystem - includes all the necessary components for encryption and decryption
- Algorithms
- Keys
- Software
- Protocols

Remember: Services of cryptosystems

- Confidentiality - Renders information unintelligible except by authorized entities
- Authentication - Verifies the identity of the user or system that created, requested or provided the information
- Nonrepudiation - Ensure the sender cannot deny sending the information
- Integrity - Data has not been altered in an unauthorized manner since it was created, transmitted, or stored

Cipher = encryption algorithm

2 main attributes combined in a cypher

1. Confusion: usually carried out through substitution
2. Diffusion: Usually carried out through transposition

The translation of what we type into ASCII, and then into binary is what is sent in data packets across the network to other computers...

Binary - Decimal

ASCII - Decimal

0	0	0	0	0	0	0	0	$=$	0
1	1	1	1	1	1	1	1	$=$	255

8 bits supports 256 numbers

ASCII Character Table

Hame	Hex	Dec
.(period)	2 E	046
0	30	048
1	31	049
2	32	050
3	33	051
4	34	052
5	35	053
6	36	054
7	37	055
8	38	056
9	39	057

Hame	Hex	Dec
A	41	065
B	42	066
C	43	067
D	44	068
E	45	069
F	46	070
G	47	071
H	48	072
I	49	073
J	$4 A$	074
K	$4 B$	075

Hame	Hex	Dec
L	4 C	076
M	4 D	077
N	4 E	078
O	4 F	079
P	50	080
Q	51	081
R	52	802
S	53	083
T	54	084
U	55	085
V	56	086

Hame	Hex	Dec
W	57	087
X	58	088
Y	59	089
Z	$5 A$	090

XOR - Exclusive OR

Creating "confusion" through substitution with a binary mathematical function called "exclusive OR", abbreviated as XOR
Message stream:
Keystream:
Ciphertext stream:

Symmetric Stream Ciphers

The sender and receiver must have the same key to generate the same keystream.
Harris, S. and Maymi, F. (2016) All-In-One CISSP Exam Guide, McGraw Hill Education

Modern Block Ciphers

- Use block sizes of 128 -bits or greater
- Examples of Block Ciphers that can be used are:
- AES (NIST's 2001 Advanced Encryption Standard - originally known as Rijndael)
- 128 bit block size, but 3 different key lengths: 128, 192, and 256 bits
- Blowfish
- Twofish
- Serpent
- Do not use these examples of block ciphers which have a 56 bit key length, which is too small to provide secure encryption:
- DES (Data Encryption Standard)
-3DES

Block Ciphers with an S-box

In this example, each Substitution Box (S-box) contains a lookup table used by the algorithm as instructions on how the bits are substituted

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Encryption table

Ciphertext	Plaintext
0000	1110
0001	-0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

Encrypted message (ciphertext)-B9
...followed by transposition...

Block cipher's "mode of operation"

5 modes of operation are used to tailor them for use in different applications:

1. ECB - Electronic Code Book mode
2. CBC - Cipher Block Chaining mode
3. CFB - Cipher FeedBack mode
4. OFB - Output FeedBack mode
5. CTR-CounTeR mode

ECB - Electronic Code Book mode

- A data block of a certain size (e.g. 64 bits or 128 bits or...) is entered into the algorithm with the key, and a block of cipher text is produced

$$
\begin{aligned}
& C_{i}=\text { Encrypt }\left(\text { Key, } P_{i}\right) \\
& \text { for } i=1, \ldots, k
\end{aligned}
$$

Where:

- Ci is block i of ciphertext
- P, is a block of plaintext

- Encrypts every block the same way every time for a given key
- Why is this a problem?
> This is a problem because frequency analysis of the encrypted text can reveal a lot of information
> Not enough randomness

CBC - Cipher Block Chaining mode

- Is much more secure
- Does not reveal a pattern of encryption for frequency analysis
- Each block of text, the key, and the value based on the previous block are processed in the algorithm and applied to the next block of text

- XORs a plaintext with the last encrypted block before encrypting it. This ensures that the same plaintext is encrypted differently every time.
- Requires an initialization vector (or IV) to get started, since the first block doesn't have a previous encrypted block to XOR against.

Cryptanalysis Attacks

- Brute force
- Trying all key values in the keyspace
- Frequency Analysis
- Guess values based on frequency of occurrence
- Dictionary Attack
- Find plaintext based on common words
- Known Plaintext
- Format or content of plaintext available
- Chosen Plaintext
- Attack can encrypt chosen plaintext
- Chosen Ciphertext
- Decrypt known ciphertext to discover key
- Random Number Generator (RNG) Attack
- Predict initialization vector used by an algorithm
- Social Engineering
- Humans are the weakest link

Modern Block Ciphers

Use block sizes of 128 -bits or greater

- Examples of Block Ciphers that can be used are:
- AES
- Blowfish
- Twofish
- Serpent

Do not use these examples of block ciphers which use 64-bit blocks, which are too small to be secure include:

- DES
-3DES

Agenda

\checkmark Team Project - It is not too early to get started...
\checkmark Case Study 1
\checkmark Cryptography terminology

- Review Symmetric Key Cryptography
- Symmetric stream cryptography
- Symmetric block cryptography
- Key sharing problem
- Public Key Cryptography
- Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
- RSA algorithm
- Hybrid-Cryptography
- Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- Brief review: Hashing \& Digital Signatures

Key sharing problem

礐一睎

Sharing cryptographic keys has been a problem throughout history
－The number of pairs of keys（＂secure network connections＂）grows at a near exponential rate（i．e．geometric rate）as the number of users increases

Users	Symmetric Keys
1	0
2	1
3	3
4	6
5	10
6	15
7	21
8	28
9	36
10	45
11	55
12	66
13	78
14	91
15	105
\ldots	\ldots

Key sharing problem
 国—島

- The number of pairs of keys needed for " n " users is determined by an equation known as Metcalf's Law
- Number of key pairs needed for n users $=(n *(n-1)) / 2$
- The reason for the $n-1$ is that you do not need to communicate with yourself
- For MIS 4596 with 22 students how many keys would we need:
$(22 * 21) / 2=231$ keys

Diffie-Hellman Algorithm: secret symmetric key derivation through public key sharing

Assumptions:

A prime number is a positive whole number whose only factors (i.e. integer divisors) are 1 and the number itself (e.g. $2,3,5,7,11,13,17,19,23, \ldots$). Bob \& Alice want to compute a shared secret key to protect confidentiality of their conversation. Eve eavesdrops...

Algorithm:

1. Bob \& Alice publicly agree on "p" called prime modulus (e.g. p=23) \& "g" called generator (e.g. $\mathbf{g}=5$), Eve overhears
2. Bob \& Alice each choose their own secret key:

- Bob's secret key is referred to as "x_bob" which is a number between 1 and p-1 (e.g. \mathbf{x} _bob $=\mathbf{1 2}$)
- Alice's secret key is referred to as "x_alice" which also is a number between 1 and p-1 (e.g. \mathbf{x} _alice = 7)

3. Bob \& Alice each computes their own public key, which they share with each other and Eve intercepts...

4. Bob \& Alice each compute their shared secret symmetric key

- Bob computes: y_alice ${ }^{x}$ _bob $\bmod p$ which is: $\mathbf{1 7}^{\mathbf{1 2}} \mathbf{~ m o d ~} 23=\mathbf{6}$
- Alice computes: y_bob ${ }^{x}$ alice $\bmod p$ which is: $\mathbf{1 8}^{7} \bmod 23=6$

5. Bob \& Alice now have a shared secret ("symmetric") key =6
6. Eve has Bob \& Alice's public keys: y _bob=18 \& y _alice $=17$, prime modulus: $p=23$ and generator: $g=5$, but not their secret keys x_bob $=12$ \& x_alice $=7$

- Eve cannot calculate Bob\& Alice's shared symmetric secret key from their public keys, p and g alone - even though she knows they are using the Diffie-Hellman algorithm!
$857,756,147,438,808,767,721,482,523,862,479,196,091,217,066,271,200,126,894,701,702,329,327,8$ 72,802,487,425,224,246,373,206,756,773,954,180,315,945,664,685,564,049,690,107,228,861,210,05 $3,005,306,168,041,237,244,792,245,832,497,260,206,801,417,396,745,674,574,281,768,112,711,519$, $809,332,223,737,878,554,093,201,446,763,995,425,025,965,323,912,149,043,161,823,975,594,943,9$ $15,411,109,637,902,372,642,611,214,196,649,667,036,726,005,577,041,694,781,738,635,943,018,156$,362,403,714,091,905,448,620,990,965,500,814,912,289,738,636,687,051,381,358,564,729,963,735,7 82,176,280,511,819,070,673,927,579,180,484,836,950,910,945,840,410,470,935,832,100,360,510,117 ,962,261,152,920,101,946,255,789,679,435,711,472,267,368,823,730,863,971,596,718,223,674,224,1 06,003,985,209,174,353,308,077,140,794,884,546,003,360,030,727,697,326,025,663,819,442,780,10 $5,880,604,943,197,516,223,343,068,846,392,924,237,875,653,640,416,933,764,628,191,065,601,980$, $281,442,005,263,033,849,543,723,716,743,986,123,624,356,871,152,793,177,027,462,801,070,011,5$ $26,783,269,474,338,816,734,553,122,757,257,382,121,230,562,181,721,318,331,271,107,036,972,78$ 8,062,816,322,387,506,944,045,038,739,178,684,349,474,317,534,892,731,313,651,324,179,101,369, $222,316,429,969,662,605,450,068,078,088,031,941,042,867,503,697,721,512,539,949,128,099,005,1$ $60,179,345,242,776,041,458,121,259,813,719,561,319,392,760,414,249,584,984,440,063,314,771,03$ $9,261,920,249,005,444,014,069,555,961,131,639,966,539,872,980,057,279,636,609,441,274,119,014$, $567,294,590,620,498,019,375,631,405,622,479,332,810,401,520,856,695,524,524,855,468,645,479,0$ 42,909,834, 183,316,487,318,824,544,358,235,183,243,643

Diffie-Hellman

- Uses asymmetric public and private keys to exchange a symmetric key
- Does not use asymmetric keys for confidentiality (i.e. to encrypt or decrypt any messages)
- Users/systems need to negotiate a new key for every new person
- No authentication, no non-repudiation

Diffie-Hellman is vulnerable to man-in-the-middle attack, because no authentication occurs before public keys are exchanged

1. Tanya sends her public key to Erika, but Lance grabs the key during transmission so it never makes it to Erika
2. Lance spoofs Tanya's identity and sends over his public key to Erika. Erika now thinks she has Tanya's public key
3. Erika sends her public key to Tanya, but Lance grabs the key during transmission so it never makes it to Tanya
4. Lance spoofs Erika's identity and sends over his public key to Tanya. Tanya now thinks she has Erika's public key
5. Tanya combines her private key and Lance's public key and creates a symmetric key S1
6. Lance combines his private key and Tanya's public key and creates symmetric key S1
7. Erika combines her private key and Lance's public key and creates symmetric key S2
8. Lance combines his private key and Erika's public key and creates symmetric key S2
9. Now Tanya and Lance share a symmetric key (S1) and Eriak and Lance share a different symmetric key (S2). Tanya and Erika think they are sharing a key between themselves and od not realize Lance is involved
10. Tanya writes a message to Erika, and uses her symmetric key (S 1) to encrypt the message, and sends it
11. Lance grabs the message and decrypts it with symmetric key S1, reads or modifies the message and re-encrypts it with symmetric key S2, and then sends it to Erika
12. Erika take symmetric key S 2 and uses it to decrypt and read the message....

Symmetric versus asymmetric algorithms

- Symmetric cryptography
- Use a copied pair of symmetric (identical) secret keys
- The sender and the receive use the same key for encryption and decryption functions
- Confidentiality, but no integrity, authentication nor non-repudiation
- Asymmetric cryptography
- Also know as "public key cryptography"
- Use different ("asymmetric") keys for encryption and decryption
- One is called the "private key" and the other is the "public key"
- Confidentiality, but also want authenticity and non-repudiation

Asymmetric cryptography

- Public and Private keys are mathematically related
- Public keys are generated from private key
- Private keys cannot be derived from the associated public key (if it falls into the wrong hands)
- Public key can be known by everyone
- Private key must be known and used only by the owner

Asymmetric systems use two different keys
for encryption and decryption purposes.

Asymmetric cryptography is computationally intensive and much slower (1,000 times slower) than symmetric cryptography

Quick review

1. If a symmetric key is encrypted with a receiver's public key, what security service is provided?

- Confidentiality: only the receiver's private key can be used to decrypt the symmetric key, and only the receiver should have access to this private key

Quick review

2. If data is encrypted with the sender's private key, what security services are provided?

- Authenticity of the sender and nonrepudiation. If the receiver can decrypt the encrypted data with the sender's public key, then receiver knows the data was encrypted with the sender's private key

Quick review

3. Why do we encrypt the message with the symmetric key rather than the asymmetric key?

- Because the asymmetric key algorithm is too slow

\dot{x} i

Leonara Ademan
Adi Shamir

RSA Public Key Algorithm

- Most popular worldwide standard, that can be used for:
- Asymmetric encryption/decryption
- Key exchange (i.e. used to encrypt AES symmetric key)
- Digital signatures
- RSA provides:
- Confidentiality through encryption
- Authentication and non-repudiation through signature verification

RSA Public Key Algorithm

- Based on factoring large numbers into their prime numbers
- A prime number is a positive whole number whose only factors (i.e. integer divisors) are 1 and the number itself
- E.g. 2, 3, 5, 7, 11, 13, 17, 19, 23, ...
- Prime number factoring is
- Easy when you know the result and one of the factors
- 6,700,283 = 1889 * X
- $6,700,283 / 1889=X$
- $X=3547$
- $6,700,283=1889$ * 3547
- Difficult when you do not know the factors, and the result is large
- 6,700,283 = prime1 * prime2
$912,000,833,142,392,234,931,095,438,312,170,357,695,712,756,726,097,734,441,072,301,836,8$ $39,393,353,139,295,831,007,333,431,845,325,988,055,078,535,723,070,121,899,982,515,821,09$ $6,513,935,693,429,159,810,068,629,730,360,987,721,191,239,128,388,101,705,884,309,757,897$, $995,146,963,367,920,258,875,045,283,800,013,428,503,089,286,243,910,365,443,336,583,304,5$ $89,741,301,149,906,707,508,832,951,802,034,609,255,816,376,427,847,745,175,505,389,216,57$ $5,446,117,214,435,309,308,014,792,888,796,704,735,885,959,753,047,089,134,349,280,135,328$, $216,026,587,690,550,563,014,619,967,646,165,581,934,916,994,388,164,807,475,497,618,817,1$ $78,492,168,759,798,526,076,195,659,132,696,724,374,189,538,701,725,588,364,053,265,311,71$ 3,122,599,620,063,110,587,984,125,160,066,509,094,636,495,654,197,043,440,384,099,590,663, $387,607,347,763,569,889,588,046,648,769,380,051,353,352,323,215,616,700,132,767,221,738,2$ $55,618,066,992,935,073,985,886,089,858,691,117,257,124,338,259,178,666,315,503,726,679,90$ $4,506,880,795,225,928,179,249,708,512,521,519,802,379,088,471,059,576,692,488,554,724,378$, $606,462,675,913,887,571,281,558,908,666,408,509,112,360,978,089,673,490,666,194,566,892,4$ $24,767,464,525,985,354,883,620,245,066,389,972,670,528,760,628,056,151,340,458,770,638,78$ 3,170,937,336,003,358,144,954,416,252,316,459,167,693,365,704,770,051,596,394,325,584,518, 899,185,083,613,743,340,976,318,518,122,032,762,826,960,167,883,646,888,151,502,959,194,1 $55,684,395,680,807,784,172,903,618,731,005,977,092,813,955,195,470,328,083,428,604,222,13$ $8,565,171,106,482,154,997,950,843,259,717,191,116,046,110,961,976,117,683,744,708,282,531$, 877,426,978,230,302,213,288,137,147

912,000,833,142,392,234,931,095,438,312, 39,393,353,139,295,831,007,333,431,845,3 6,513,935,693,429,159,810,068,629,730,36 995,146,963,367,920,258,875,045,283,800, 89,741,301,149,906,707,508,832,951,802,0 5,446,117,214,435,309,308,014,792,888,79 216,026,587,690,550,563,014,619,967,646, $78,492,168,759,798,526,076,195,659,132,6$

prime $_{1}{ }^{*}$ prime $_{2}=$

 3,122,599,620,063,110,587,984,125,160,06 387,607,347,763,569,889,588,046,648,769, $55,618,066,992,935,073,985,886,089,858,6$ 4,506,880,795,225,928,179,249,708,512,52 606,462,675,913,887,571,281,558,908,666, $24,767,464,525,985,354,883,620,245,066,3$ 3,170,937,336,003,358,144,954,416,252,31 899,185,083,613,743,340,976,318,518,122, $55,684,395,680,807,784,172,903,618,731,0$ 8,565,171,106,482,154,997,950,843,259,71 877,426,978,230,302,213,288,137,147
Public Key algorithms

- Fundamental security elements in cryptosystems, applications and protocols
- Assure confidentiality, authenticity and non-repudiation of electronic communications and data storage
- Provide:
- Key distribution and secrecy (e.g. Diffie-Hellman key exchange)
- Digital signatures (e.g. Digital Signature Algorithm)
- Both: key distribution and secrecy and digital signatures (e.g., RSA, ECC)

Elliptic-curve cryptography (ECC)

- Alternate approach to public-key cryptography based on algebraic structure of elliptic curves (based on Galois fields)
- Provides much the same security functionality as Diffie-Hellman and RSA:
- Encryption/decryption (confidentiality)
- Secure key distribution (authenticity, confidentiality)
- Digital signatures (authenticity, non-repudiation)

- ECC's is much more efficient than RSA and the other asymmetric algorithms
- Requires less bits and smaller keys than RSA for achieving the same level of security in its calculations and other algorithms
- ECC's efficiency makes it very good for wireless devices and cellular phones with limited processing capacity, storage, power supply and bandwidth

Public Key Management

Figure 9.1 Public-Key Cryptography

Stallings, W. (2014) Cryptography and Network Security

Agenda

\checkmark Team Project - It is not too early to get started...
\checkmark Case Study 1
\checkmark Cryptography terminology
\checkmark Symmetric Key Cryptography
\checkmark Symmetric stream cryptography
\checkmark Symmetric block cryptography
\checkmark Key sharing problem
\checkmark Public Key Cryptography
\checkmark Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
\checkmark RSA algorithm

- Hybrid-Cryptography
- Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- Brief review: Hashing \& Digital Signatures

Hybrid Encryption (a.k.a. "digital envelope")

Symmetric and asymmetric and algorithms are often used together

- Public key cryptography's asymmetric algorithm is used to create public and private keys for authentication and confidentiality to help achieve secure automated key distribution
- Symmetric algorithm is used to create secret keys for rapid encryption/decryption of bulk data

Session keys

Single-use symmetric keys used to encrypt messages between two users in an individual communication session

\qquad

This is how secure web client applications communicate with server-side services

Lance
Tanya
5.

Session key

1) Tanya sends Lance her public key.
2) Lance generates a random session key and encrypts it using Tanya's public key.
3) Lance sends the session key, encrypted with Tanya's public key, to Tanya.

4) Tanya decrypts Lance's message with her private key and now has a copy of the session key.
5) Tanya and Lance use this session key to encrypt and decrypt messages to each other.

Perfect Forward Secrecy (PFS) or Forward Secrecy (FS)

Designed to prevent the compromise of a long-term secret key from affecting the confidentiality of past conversations

- Protects encrypted data recorded in past sessions against future attacks and compromises of private or secret keys
- Diffie-Hellman and RSA are used together to protect encrypted communications and sessions recorded in the past from being retrieved and decrypted in the future if long-term secret or private keys are compromised in the future

Example of a simple instant messaging protocol employing forward secrecy:

1. Alice and Bob each generate a pair of long-term, asymmetric public and private keys, verification establishes confidence that the claimed owner of a public key is the actual owner
2. Alice and Bob use a key exchange algorithm such as Diffie-Hellman, to securely agree on a short-term symmetric session key

- They use the asymmetric keys from step 1 only to authenticate one another during this process

3. Alice sends Bob a message, encrypting it with a symmetric cipher using the session key negotiated in step 2
4. Bob decrypts Alice's message using the key negotiated in step 2
5. The symmetric session key exchange process repeats for each new message sent, starting from step 2 (switching Alice and Bob's roles as sender/receiver as appropriate)

- Step 1 is never repeated
- Forward secrecy is achieved by generating new session keys for each message
- It ensures that past communications cannot be decrypted if one of the keys generated in an iteration of step 2 is compromised, since such a key is only used to encrypt a single message
- It also ensures that past communications cannot be decrypted if the long-term private keys from step 1 are compromised
- However, masquerading as Alice or Bob would be possible going forward if this occurred, possibly compromising all future messages

Perfect Forward Secrecy

- Forward secrecy is present in several major protocol implementations:
- SSH
- IPsec (RFC 2412) as an optional feature
- Transport Layer Security (TLS)
- Cipher suites based on Diffie-Hellman key exchange (DHE-RSA, DHE-DSA)
- Elliptic curve Diffie-Hellman key exchange (ECDHE-RSA, ECDHE-ECDSA)
- OpenSSL supports forward secrecy using elliptic curve Diffie-Hellman since V1.0
- Off-the-Record Messaging, a cryptography protocol and library for many instant messaging clients

Perfect Forward Security in use...

Google Security Blog

The latest news and insights from Google on security and safety on the Interne

Protecting data for the long term with forward secrecy

 November 22, 2011Posted by Adam Langley, Security Team

Last year we introduced HTTPS by default for Gmail and encrypted search. We're pleased to see that other major communications sites are following suit and deploying HTTPS in one form or another. We are now pushing forward by enabling forward secrecy by default.

Most major sites supporting HTTPS operate in a non-forward secret fashion, which runs the risk of retrospective decryption. In other words, an encrypted, unreadable email could be recorded while being delivered to your computer today. In ten years time, when

[^0] authentication

Services of cryptosystems

\checkmark Confidentiality - Renders information unintelligible except by authorized entities
\checkmark Authentication - Verifies the identity of the user or system that created, requested or provided the information
\checkmark Nonrepudiation - Ensure the sender cannot deny sending the information

- Integrity - Data has not been altered in an unauthorized manner since it was created, transmitted, or stored

Agenda

\checkmark Team Project - It is not too early to get started...
\checkmark Case Study 1
\checkmark Cryptography terminology
\checkmark Symmetric Key Cryptography
\checkmark Symmetric stream cryptography
\checkmark Symmetric block cryptography
\checkmark Key sharing problem
\checkmark Public Key Cryptography
\checkmark Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
\checkmark RSA algorithm
\checkmark Hybrid-Cryptography
\checkmark Perfect Forward Secrecy

- Where do cryptographic controls go in the FedRAMP System Security Plan
- Brief review: Hashing \& Digital Signatures

Where in the FedRAMP System Security Plan would you look for information to help you assess the security of the Titan Information System?

Where do you look for encryption related controls that could help Titan?

NIST Special Publication 800-53 evision 5 Security and Privacy Controls for Information Systems and Organizations	CLASS	FAMILY	IDENTIFIER
	Management	Risk Assessment	RA
	Management	Planning	PL
	Management	System and Services Acquisition	SA
	Management	Certification, Accreditation, and Security Assessments	CA
	Operational	Personnel Security	PS
	Operational	Physical and Environmental Protection	PE
	Operational	Contingency Planning	CP
	Operational	Configuration Management	CM
	Operational	Maintenance	MA
	Operational	System and Information Integrity	SI
	Operational	Media Protection	MP
	Operational	Incident Response	IR
	Operational	Awareness and Training	AT
	Technical	Identification and Authentication	IA
	Technical	Access Control	AC
	Technical	Audit and Accountability	AU
	Technical	System and Communications Protection	SC

$\begin{aligned} & \text { CNTL } \\ & \text { NO. } \end{aligned}$	CONTROL NAME		InItial Control baselines		
			LOW	MOD	HIGH
System and Communications Protection					
SC-1	System and Communications Protection Policy and Procedures	P1	SC-1	SC-1	SC-1
SC-2	Application Partitioning	P1	Not Selected	SC-2	SC-2
SC-3	Security Function Isolation	P1	Not Selected	Not Selected	SC-3
SC-4	Information in Shared Resources	P1	Not Selected	sc-4	SC-4
SC-5	Denial of Service Protection	P1	SC-5	SC-5	SC-5
SC-6	Resource Availability	P0	Not Selected	Not Selected	Not Selected
SC-7	Boundary Protection	P1	SC-7	$\begin{gathered} \mathrm{SC-7}(3)(4)(5) \\ (7) \\ \hline \end{gathered}$	$\begin{aligned} & \text { SC-7 (3) (4)(5) } \\ & (7)(8)(18)(21) \\ & \hline \end{aligned}$
SC-8	Transmission Confidentiality and Integrity	P1	Not Selected	SC-8 (1)	SC-8 (1)
SC-9	Withdrawn	--	--	--	--
SC-10	Network Disconnect	P2	Not Selected	SC-10	SC-10
SC-11	Trusted Path	P0	Not Selected	Not Selected	Not Selected
SC-12	Cryptographic Key Establishment and Management	P1	SC-12	SC-12	SC-12 (1)
SC-13	Cryptographic Protection	P1	SC-13	SC-13	SC-13
SC-14	Withdrawn	--	--	--	--
SC-15	Collaborative Computing Devices	P1	SC-15	SC-15	SC-15
SC-16	Transmission of Security Attributes	P0	Not Selected	Not Selected	Not Selected
SC-17	Public Key Infrastructure Certificates	P1	Not Selected	SC-17	SC-17
SC-18	Mobile Code	P2	Not Selected	SC-18	SC-18
SC-19	Voice Over Internet Protocol	P1	Not Selected	SC-19	SC-19
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	P1	SC-20	SC-20	SC-20
SC-21	Secure Name/Address Resolution Service (Recursive or Caching Resolver)	P1	SC-21	SC-21	SC-21
SC-22	Architecture and Provisioning for Name/Address Resolution Service	P1	SC-22	SC-22	SC-22
SC-23	Session Authenticity	P1	Not Selected	SC-23	SC-23
SC-24	Fail in Known State	P1	Not Selected	Not Selected	SC-24
SC-28	Protection of Information at Rest	P1	Not Selected	SC-28	SC-28
sc-39	Process Isolation	P1	SC-39	SC-39	SC-39

SC-12 CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT

Control: The organization establishes and manages cryptographic keys for required cryptography employed within the information system in accordance with [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

Supplemental Guidance: Cryptographic key management and establishment can be performed using manual procedures or automated mechanisms with supporting manual procedures. Organizations define key management requirements in accordance with applicable federal laws, Executive Orders, directives, regulations, policies, standards, and guidance, specifying appropriate options, levels, and parameters. Organizations manage trust stores to ensure that only approved trust anchors are in such trust stores. This includes certificates with visibility external to organizational information systems and certificates related to the internal operations of systems. Related controls: SC-13, SC-17.
Control Enhancements:
(1) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT|AVAILABILITY

The organization maintains availability of information in the event of the loss of cryptographic keys by users.
Supplemental Guidance: Escrowing of encryption keys is a common practice for ensuring availability in the event of loss of keys (e.g., due to forgotten passphrase).
(2) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | SYMMETRIC KEYS

The organization produces, controls, and distributes symmetric cryptographic keys using [Selection: NIST FIPS-compliant; NSA-approved] key management technology and processes.
(3) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | ASYMMETRIC KEYS

The organization produces, controls, and distributes asymmetric cryptographic keys using [Selection: NSA-approved key management technology and processes; approved PKI Class 3 certificates or prepositioned keying material; approved PKI Class 3 or Class 4 certificates and hardware security tokens that protect the user's private key].
(4) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT| PKI CERTIFICATES
[Withdrawn: Incorporated into SC-12].
(5) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT| PKI CERTIFICATES/HARDWARE TOKENS [Withdrawn: Incorporated into SC-12].

References: NIST Special Publications 800-56, 800-57.
Priority and Baseline Allocation:

P1	LOW SC-12	MOD SC-12	HIGH SC-12 (1)

CNTL NO.	CONTROL NAME		INITIAL CONTROL BASELINES		
			LOW	MOD	HIGH
System and Communications Protection					
SC-1	System and Communications Protection Policy and Procedures	P1	SC-1	SC-1	SC-1
SC-2	Application Partitioning	P1	Not Selected	SC-2	SC-2
SC-3	Security Function Isolation	P1	Not Selected	Not Selected	SC-3
SC-4	Information in Shared Resources	P1	Not Selected	SC-4	SC-4
SC-5	Denial of Service Protection	P1	SC-5	SC-5	SC-5
SC-6	Resource Availability	P0	Not Selected	Not Selected	Not Selected
SC-7	Boundary Protection	P1	SC-7	$\begin{gathered} \mathrm{SC}-7(3)(4)(5) \\ (7) \end{gathered}$	$\begin{aligned} & \text { SC-7 (3) (4) (5) } \\ & (7)(8)(18)(21) \end{aligned}$
SC-8	Transmission Confidentiality and Integrity	P1	Not Selected	SC-8 (1)	SC-8 (1)
SC-9	Withdrawn	--	--	--	--
SC-10	Network Disconnect	P2	Not Selected	SC-10	SC-10
SC-11	Trusted Path	P0	Not Selected	Not Selected	Not Selected
SC-12	Cryptographic Key Establishment and Management	P1	SC-12	SC-12	SC-12 (1)
SC-13	Cryptographic Protection	P1	SC-13	SC-13	SC-13
SC-14	Withdrawn	--	--	--	--
SC-15	Collaborative Computing Devices	P1	SC-15	SC-15	SC-15
SC-16	Transmission of Security Attributes	P0	Not Selected	Not Selected	Not Selected
SC-17	Public Key Infrastructure Certificates	P1	Not Selected	SC-17	SC-17
SC-18	Mobile Code	P2	Not Selected	SC-18	SC-18
SC-19	Voice Over Internet Protocol	P1	Not Selected	SC-19	SC-19
SC-20	Secure Name/Address Resolution Service (Authoritative Source)	P1	SC-20	SC-20	SC-20
SC-21	Secure Name/Address Resolution Service (Recursive or Caching Resolver)	P1	SC-21	SC-21	SC-21
SC-22	Architecture and Provisioning for Name/Address Resolution Service	P1	SC-22	SC-22	SC-22
SC-23	Session Authenticity	P1	Not Selected	SC-23	SC-23
SC-24	Fail in Known State	P1	Not Selected	Not Selected	SC-24
SC-28	Protection of Information at Rest	P1	Not Selected	SC-28	SC-28
SC-39	Process Isolation	P1	SC-39	SC-39	SC-39

SC-13 CRYPTOGRAPHIC PROTECTION

Control: The information system implements [Assignment: organization-defined cryptographic uses and type of cryptography required for each use] in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards.

Supplemental Guidance: Cryptography can be employed to support a variety of security solutions including, for example, the protection of classified and Controlled Unclassified Information, the provision of digital signatures, and the enforcement of information separation when authorized individuals have the necessary clearances for such information but lack the necessary formal access approvals. Cryptography can also be used to support random number generation and hash generation. Generally applicable cryptographic standards include FIPS-validated cryptography and NSA-approved cryptography. This control does not impose any requirements on organizations to use cryptography. However, if cryptography is required based on the selection of other security controls, organizations define each type of cryptographic use and the type of cryptography required (e.g., protection of classified information: NSA-approved cryptography; provision of digital signatures: FIPS-validated cryptography). Related controls: AC-2, AC-3, AC-7, AC-17, AC-18, AU-9, AU-10, CM-11, CP-9, IA-3, IA-7, MA-4, MP-2, MP-4, MP-5, SA-4, SC-8, SC-12, SC-28, SI-7.

Control Enhancements: None.
(1) CRYPTOGRAPHIC PROTECTION| FIPS-VALIDATED CRYPTOGRAPHY [Withdrawn: Incorporated into SC-13].
(2) CRYPTOGRAPHIC PROTECTION | NSA-APPROVED CRYPTOGRAPHY [Withdrawn: Incorporated into SC-13].
(3) CRYPTOGRAPHIC PROTECTION | INDIVIDUALS WITHOUT FORMAL ACCESS APPROVALS [Withdrawn: Incorporated into SC-13].
(4) CRYPTOGRAPHIC PROTECTION | DIGITAL SIGNATURES [Withdrawn: Incorporated into SC-13].

References: FIPS Publication 140; Web: http://csrc.nist.gov/cryptval, http://www.cnss.gov. Priority and Baseline Allocation:

P1	LOW SC-13	MOD SC-13	HIGH SC-13

Where do you document this information in your SSP？

EEDRAMP SYSTEM SECURITY PLAN（SSP）HIGH BASELINE TEMPLATE CSP Name I Information System Name

Version \＃\＃\＃Date

TABLE OF CONTENTS
INFORMATION SYSTEM NAME／TTILE ．．
INFORMATION SYSTEM CATE／TERE．．．
2．1．
2．2．Security Objectives Categorization（FIPS 199）．
2．3．Digital Identity Determination
INFORMATION SYSTEM OWNER
4．AUTHORIZING OFFIIIALS．
other designated contacts
ASSIGNMENT OF SECURITY RESPONSIBILTY
．INFORMATION SYSTEM OPERATIONAL STATUS．．
3．INFORMATION SYSTEM TYPE，
$\begin{array}{ll}\text { 8．1．} & \text { Cloud Service Models．．．．．．．．．} \\ \text { 8．2．} \\ \text { Cloud Deployment Models．}\end{array}$
8.2 Cloud Deployment Models
general system description
9．1．
9．2．Information System Components and Bounda．．．．．．．．．．．．．．．．．．．．
9．3．Types of Users ．．．．．．．．．
9．4．
Network Architectur

IO．SYSTEM ENVIRONMENT AND INVENTORY．．． 12
10．1．Data Flow ．．

12．LAWS，REGULATIONS，STANDARDS AND GUIDANCE．．． 17
12．1．Applicable laws and Regulations ．．． 17
12．2．Applicable Standards and Guidance
MINIMUM SECURTTY CONTROLS．
13.1.

AC－2 Account Management（H）．．．．
AC－2 (1) Control Enhancement（M）（H）
AC－2 $2(2)$ Control Enhancement
${ }_{A C-2}^{A C-2(2) \text { Control }}$ C Conhancement Ent (H) ．

AC－2（11）Control Enhancement（H）
AC－2（12）Control Enhancement (H) ）．

FedRAMP

FedRAMP ${ }^{\circledR}$ System Security Plan (SSP) Appendix A: High FedRAMP Security Controls

for <Insert CSP Name>

<lnsert Cso Name>
<lnsert Version x x> <Insert Version $X X=$
Insert MMIDDMYY
 GSA ${ }^{\text {c }}$ $\underset{\substack{\text { nretetamenpos } \\ \text { netampo }}}{ }$

SA-15 Development Process. Standerds, and Tools (M)(H)
SA-15(3) Criticality Analysis (M)(H).

SA-17 Developer Security and Privecy Acchitecture and Design (H) ...———

SA-22 Unsupported System Components (L)(M)(H) $+\square+\square+\quad+\quad+\quad+\quad{ }^{440}$
System and Communications Protection._-_
SC-1 Policy and Procedures (L)(M)(H) . \quad (
SC-2 Separation of System and User Functionsility (M)(H)...._工_ . 443

SC-12 Cryptographic Key Establishment and Management (L)(M)(H)

Establish and manage cryptographic keys when cryptography is employed within the system in accordance with the following key management requirements: [FedRAMP Assignment in accordance with Federal requirements]

SC-12 Additional FedRAMP Requirements and Guidance:
Guidance: See references in NIST 800-53 documentation.
Guidance: Must meet applicable Federal Cryptographic Requirements. See References Section of control.
Guidance: Wildcard certificates may be used internally within the system_hut are not permitted for external customer access to the system.

sC-12 Control Summary Information
Responsible Role:
Parameter SC-12:
Implementation Status (check all that apply):
\square Implemented
\square Partially Implemented
\square Planned
\square Alternative implementation
\square Not Applicable
Control Origination (check all that apply):
\square Service Provider Corporate
\square Service Provider System Specific
\square Service Provider Hybrid (Corporate and System Specific)
\square Configured by Customer (Customer System Specific)
\square Provided by Customer (Customer System Specific)
\square Shared (Service Provider and Customer Responsibility)
\square Inherited from pre-existing FedRAMP Authorization for [Click here to enter text], Date of
Authorization

FedRAMP® ${ }^{\circledR}$ System Security Plan (SSP) Appendix A: High FedRAMP Security Controls
for <Insert CSP Name>
<Insert Cso Name>
<lnsert Version x x>
<lnsert Version X X
<Insert MMIDDMYYY>

FR

SA-15 Development Process. Standards. and Tools (M)(H). $\begin{array}{r}434 \\ \hline 435\end{array}$
SA-15(3) Criticality Analysis (M) (H)

SA-17 Developer Security and Privecy Acrhitecture and Design (H) ..._
SA-21 Developer Screening (H))...
SA-22 Unsupported System Components (L)(M)(H) $\quad \square \square \square \square \square \square \square \square \square$

SC-1 Policy and Procedures $($ LL)(M)(H) $\quad \square \quad 442$
SC-2 Separation of System and User Functionsily (M)(H)...._

sc.-8(1) Cryptographic Protection (L)(M)(H).
C -10 Network Disoonneet $(\mathrm{M}) \mathrm{H}$ (H) $\longrightarrow \square \square{ }_{4}^{465}$ SC-12 Cryptographic Key Establishment and Management (L)(M)(H) \quad (\quad 466 SC-12(1) Availability (H) -

 SC-18 Mobile Code (M)(H). | . .472 |
| :--- |
| |

C. 18 Mobile Code (M)(H) _ C \quad R C. 20 Secure Name/Address Resoltion Service (Authoritative Source) (L)(M)(H)....... 474 SC-21 Secure Namel/Adress Resolution Senice (Recursive or Caching Resolver) (L)(M)(M)H) 47 (SC-22 Architecture and Provisioning for Name/Address Resolution Service (L)(M)(H)...... 477	
478	$C-23$ Session Authenticty (M) -478

SC-28(1) Cryptographic Protection (L)(M)(H) $\quad \square \square \square \square \square$ SC-39 Process Isolation (L)(M)(H) _
 SC-45(1) Synchronization with Authoritative Time Source (M)(H) \quad 线 $\quad 488$ System and Information interity

SC-12(1) Availability (H)

Maintain availability of information in the event of the loss of cryptographic keys by users.

SC-12(1) Control Summary Information
Responsible Role:
Implementation Status (check all that apply):
\square Implemented
\square Partially Implemented
\square Planned
\square Alternative implementation
\square Not Applicable
Control Origination (check all that apply):
\square Service Provider Corporate
\square Service Provider System Specific
\square Service Provider Hybrid (Corporate and System Specific)
\square Configured by Customer (Customer System Specific)
\square Provided by Customer (Customer System Specific)
\square Shared (Service Provider and Customer Responsibiiity)
\square Inherited from pre-existing FedRAMP Authorization for [Click here to enter text], Date of
Authorization

SC-12(1) What is the solution and how is it implemented?

FedRAMP® ${ }^{\circledR}$ System Security Plan (SSP) Appendix A: High FedRAMP Security Controls
for <Insert CSP Name>
<Insert Cso Name>
<lnsert Version x x>
<lnsert Version X X
<Insert MMIDDMYYY>

FR

SA-15 Development Process. Standards. and Tools (M)(H). $\begin{array}{r}434 \\ \hline 435\end{array}$
SA-15(3) Criticality Analysis (M) (H)

SA-17 Developer Security and Privecy Acrhitecture and Design (H) ..._
SA-21 Developer Screening (H))...
SA-22 Unsupported System Components (L)(M)(H) $\quad \square \square \square \square \square \square \square \square \square$

SC-1 Policy and Procedures $($ LL)(M)(H) $\quad \square \quad 442$
SC-2 Separation of System and User Functionsily (M)(H)...._

sc.-8(1) Cryptographic Protection (L)(M)(H).
C -10 Network Disoonneet $(\mathrm{M}) \mathrm{H}$ (H) $\longrightarrow \square \square{ }_{4}^{465}$ SC-12 Cryptographic Key Establishment and Management (L)(M)(H) \quad (\quad 466 SC-12(1) Availability (H) -

 SC-18 Mobile Code (M (H) \quad 4 43 C-18 Mobile Code (M)(H). \qquad -473
C-20 Secure Name/Address Resolution Service (Authoritative Source) (L)(M)(H)..........474 C-21 Secure Name/Address Resolution Service (Recursive or Caching Resolver) (L)(M)M(H) SC-22 Architecture and Provisioning for Name/Address Resolution Service (L)(M)(H)..... 477 C. 23 Session Authenticity (M)(H) $\quad 478$ C-23 Session Authenticity (M)(H) ${ }^{-478}$ SC-24 Fail in Known State (H). .479
SC-28 Protection of information at Rest (L)(M) (H) \quad 481
SC-28(1) Cryptographic Protection (L)(M)(H) - $\quad \square \quad \square \quad \square \quad{ }_{482}$ C.-39 Process Isolation (L)(M)MCH) SC-45 System Time Synchronization (M)(H)..... SC-45(1) Synchronization with Authoritative Time Source (M)(H) \quad. \quad 486 System and Information interity

SC-12(1) Availability (H)

Maintain availability of information in the event of the loss of cryptographic keys by users.

SC-12(1) Control Summary Information
Responsible Role:
Implementation Status (check all that apply):
\square Implemented
\square Partially Implemented
\square Planned
\square Alternative implementation
\square Not Applicable
Control Origination (check all that apply):
\square Service Provider Corporate
\square Service Provider System Specific
\square Service Provider Hybrid (Corporate and System Specific)
\square Configured by Customer (Customer System Specific)
\square Provided by Customer (Customer System Specific)
\square Shared (Service Provider and Customer Responsibiiity)
\square Inherited from pre-existing FedRAMP Authorization for [Click here to enter text], Date of
Authorization

SC-12(1) What is the solution and how is it implemented?

SC-12(1) Availability (H)
Maintain availability of information in the event of the loss of cryptographic keys by users.

SC-12(1) Control Summary Information
Responsible Role:
Implementation Status (check all that apply):
\square Implemented
\square Partially Implemented
\square Planned
\square Alternative implementation
\square Not Applicable
Control Origination (check all that apply):
\square Service Provider Corporate
\square Service Provider System Specific
\square Service Provider Hybrid (Corporate and System Specific)
\square Configured by Customer (Customer System Specific)
\square Provided by Customer (Customer System Specific)
\square Shared (Service Provider and Customer Responsibility)
\square Inherited from pre-existing FedRAMP Authorization for [Click here to enter text], Date of Authorization

SC-12(1) What is the solution and how is it implemented?

About keys

Article • 01/25/2023 • 9 contributors

In this article

Key types and protection methods
Usage Scenarios
Next steps

Azure Key Vault provides two types of resources to store and manage cryptographic keys. Vaults support software-protected and HSM-protected (Hardware Security Module) keys. Managed HSMs only support HSM-protected keys.

Resource type	Key protection methods	Data-plane endpoint base URL
Vaults	Software-protected	https://\{vault-name\}.vault.azure.net
	and	
MSM-protected (with Premium SKU)		
Managed HSMs	HSM-protected	https://\{hsm-name\}.managedhsm.azure.net

Agenda

\checkmark Case Study 1
\checkmark Cryptography terminology
\checkmark Symmetric Key Cryptography
\checkmark Symmetric stream cryptography
\checkmark Symmetric block cryptography
\checkmark Key sharing problem
\checkmark Public Key Cryptography
\checkmark Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
\checkmark RSA algorithm
\checkmark Hybrid-Cryptography
\checkmark Perfect Forward Secrecy
\checkmark Where do cryptographic controls go in the FedRAMP System Security Plan

- Brief review: Hashing \& Digital Signatures

Quick Review: One-way Hash

- Assures message integrity

- A function that takes a variable-length string (i.e. message) and produces a fixedlength value called a hash value
- Does not use keys

1. Sender puts message through hashing function
2. Message digest generated
3. Message digest appended to the message
4. Sender sends message to receiver
5. Receiver puts message through hashing function
6. Receiver generates message digest value
7. Receiver compares the two message digests values. If they are the same, the message has not been altered

Note: Hashing results in fixed-sized output

- Names for the output of a hashing functions include "hash" and a message digest (md), because a hash "digests" an input of any size down to a fixed-sized output
- No matter the size of the input, the out put is the same, for example the md5 hash function's output:
- Letter 'a' in binary: 01000001 => md5 hash => 32-character string
- Blu-ray disk digest => md5 hash => 32-character string
- 6 TB hard drive digest => md5 hash => 32-character string

One-way hash example...

Testing the integrity of a file (e.g. program) downloaded from the internet...

One-way hash example...

Image Name	Download	Size	Version	sha256sum
Kali 64 bit	HTTP I Torrent	2.8 G	2017.2	$4556775 \mathrm{bfb} 981 \mathrm{ae} 64 \mathrm{a} 3 \mathrm{cb} 19 \mathrm{aa} 0 \mathrm{~b} 73 \mathrm{e} 8 \mathrm{dcac} 6 \mathrm{e} 4 \mathrm{ba524f31c4bc14c9137b99725d}$4

```
\indows PowerShell
PS C:\Users\tue87168> cd Downloads
PS C:\Users\tue87168\Downloads> dir #.iso
Directory: C:\Users\tue87168\Downloads
```

$8 / 10 / 2017$	$10: 55$
8/10/2017	$11: 03$
6/12/2017	$10: 29$
9/27/2017	$3: 03 \mathrm{PM}$
$10 / 3 / 2017$	$8: 49 \mathrm{PM}$
$11 / 11 / 2016$	$11: 45 \mathrm{AM}$
$11 / 9 / 2017$	$2: 31 \mathrm{PM}$

```

\section*{Length Name}
```

674803712 CSET_8.0 (1).iso 674803712 CSET_8.0 (2).1so 674803712 CSET_8.0.1so
2421987328 en_project_professional_2016_x86_x64_dvd_6962236.iso nisio professional 2016 ,150 1469054976 Fedora-Live-Workstation-x86_64-23-10.iso 3020619776 kali-1inux-2017.2-amd64.iso
PS C:\Users \tue87168\Downloads> Get-FileHash kali-linux-2017.2-amd64.iso | Format-List

```
```

-a----

```
-a----
    a-----
    a-----
a----
a----
a-----
a-----
a----
a----
a----
a----
a----
a----
Algorithm : SHA256
Algorithm : SHA256
Algorithm : SHA256
Hash : 4556775BFB981AE64A3CB19AA0B73E8DCAC6E4BA5 24F31C4BC14C9137B99725D
Hash : 4556775BFB981AE64A3CB19AA0B73E8DCAC6E4BA5 24F31C4BC14C9137B99725D
Path : C:\Users\tue87168\Downloads\kali-1inux-2017.2-amd64.iso
Path : C:\Users\tue87168\Downloads\kali-1inux-2017.2-amd64.iso
PS C:\Users\tue87168\Downloads> -

\section*{One-way hash example...}
(2) Windows PowerShell

\section*{Notice the amount of confusion and diffusion} resulting from a 1 character change!
Directory: C:\Users\tue87168\Downloads


PS C: \Users \tue87168 \Downloads> type MIS5206-IsGood.txt MIS5206 is good
PS C:\Users\tue87168\Downloads> Get-FileHash MIS5206-IsGood.txt | Format-List
Algorithm : SHA256
Hash : E6F05 3ADE3857C0EDC2896B229D0B91D4752B2D9D8C9BD4B2A45A4ACCB3999DD
Path : C:\Users\tue87168\Downloads\MIS5206-IsGood.txt

PS C:\Users\tue87168\Downloads> type MIS5206-IsGood.txt
MIS5206 is goop
PS C: \Users \tue87168\Downloads> Get-FileHash MIS5206-IsGood.txt | Format-List

Algorithm : SHA256
Hash : 877B45EA5 D40D98FF8D1ABD919E154F446FEA11387DBB13DDEE448F9932928A5
Path : C:\Users\tue87168\Downloads\MIS5206-IsGood.txt

\section*{Cryptanalysis Attack}

\section*{Collisions}
- Two different messages with the same hash value
- Based on the "birthday paradox"
- Hash algorithms should be resistant to this attack

The birthday paradox, also known as the birthday problem, states that in a random group of 23 people, there is about a 50 percent chance that two people have the same birthday.

\section*{Is the Birthday Attack Real?}
- There are multiple reasons why this seems like a paradox

- One is that when in a room with 22 other people, if a person compares his or her birthday with the birthdays of the other people it would make for only 22 comparisons-only 22 chances for people to share the same birthday.

When all 23 birthdays are compared against each other, it makes for much more than 22 comparisons. How much more? Well, the first person has 22 comparisons to make, but the second person was already compared to the first person, so there are only 21 comparisons to make. The third person then has 20 comparisons, the fourth person has 19 and so on. If you add up all possible comparisons ( \(22+21+20\)
\(+19+\ldots+1\) ) the sum is 253 comparisons, or combinations.
Consequently, each group of 23 people involves 253 comparisons, or 253 chances for matching birthdays.

\section*{MD5 (Message Digest 5)}
- A 128-bit hash algorithm, still in common use
- Has been broken
- 128-bit hash, but only need \(2^{128 / 2}=2^{64}\) to find a collision
- Not strong enough for modern computers

Example of an MD5 hash collision:
\begin{tabular}{l|l|l|l} 
Name & Date modified & Type & Size \\
■ ProgramA & \(1 / 27 / 20204: 08\) PM & Application & \\
- ProgramB & \(1 / 27 / 20204: 08\) PM & Application & 6 KB \\
\end{tabular}
Hello, world!
(press enter to quit)

ProgramA run


ProgramB run
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{2. Windows PowerShell} & & - & \(\square\) \\
\hline \multicolumn{5}{|l|}{PS C:\Users\Dave\Desktop\MD5-Hash-Collision-Example> get-filehash ProgramA.exe -Algorithm MD5} \\
\hline Algorithm & Hash & Path & & \\
\hline MD5 & CDC47D670159EEF60916CA03A9D4A007 & C: \U & Pro & mA.exe \\
\hline \multicolumn{5}{|l|}{PS C:\Users\Dave\Desktop MD5-Hash-Collision-Example> get-filehash ProgramB.exe -Algorithm MD5 \(^{\text {a }}\)} \\
\hline Algorithm & Hash & Path & & \\
\hline MD5 & CDC47D670159EEF60916CA03A9D4A007 & C: \U & Pro & mB.exe \\
\hline
\end{tabular}

In 2012 malware Flame used a MD5 hash collision to hijack Microsoft Windows Update and spread itself across networks
- Flame collected audio, keystrokes, screenshots which it sent to a malicious server
- Found a collision within a single millisecond
- Cost \(\sim \$ 200 \mathrm{k}\) computing time just for 1 ms
- Attributed to advanced persistent threat group Equation Group
- Used in espionage attacks on countries


\section*{SHA -1 (Security Hash Algorithm 1)}
- A 160-bit hash algorithm, still in common use
- Has been broken
- 160-bit hash, but only need \(2^{160 / 2}=2^{80}\) to find a collision
- No longer strong enough for modern computers

SHA-2 uses 224, 256, 384, and 512-bit hashes
- But... it is built using the design of SHA-1, and prone to the same weaknesses
- It's believed to be a matter of time before SHA-2 is also exploited

SHA-3 was recently ratified by NIST, the U.S. National Institute of Standards and Technology
- It was the result of a six-year hashing competition. Also uses 224-, 256-, 384-, 512-bit hashes

\section*{Why does this matter for businesses?}

\section*{Digital Signature}

The act of signing means encrypting the message's hash value with the private key


\section*{Integrity-based malware detection}
- Calculates and stores a hash for each component of the system: operating system files, application files, configuration files, ...
- Each new scan of the system calculates a hash for each component and compares it with the stored hash to detect differences
- Detected differences send alters and are flagged as suspect for further analysis


\section*{Services of cryptosystems}
\(\checkmark\) Confidentiality - Renders information unintelligible except by authorized entities
\(\checkmark\) Authentication - Verifies the identity of the user or system that created, requested or provided the information
\(\checkmark\) Nonrepudiation - Ensure the sender cannot deny sending the information
\(\checkmark\) Integrity - Data has not been altered in an unauthorized manner since it was created, transmitted, or stored

\section*{Summary: Symmetric Algorithms}
\begin{tabular}{|c|c|c|c|}
\hline Name & Key Length (bits) & Block Size (bits) & Notes \\
\hline DES & 56 (56 + 8 parity) & 64 & Replaced by 3DES \\
\hline 3DES & 56,112 , or 168 (+8, 16, 24 parity) & 64 & Replaced by AES \\
\hline Blowfish & 32 to 448 & 64 & Replaced by Twofish \\
\hline TwoFish & 128, 192, or 256 & 128 & Slower than AES. \\
\hline AES (Rijandel) & 128, 192, or 256 & 128 & FIPS 197 \\
\hline RC4 & 8 to 2048-bit key (usually 40 to 256) & Stream & No longer in use \\
\hline RC5 & Variable (up to 2048) & 32,64 or 128 & Very Strong \\
\hline RC6 & 128,192 , and 256 bits up to 2040bits & 128 & Based on RC5. (RSA) \\
\hline
\end{tabular}

\section*{Summary: Hashing Algorithms (Integrity)}
\begin{tabular}{|l|l|l|l|l|}
\hline & Hash Size (bits) & Block Size (bits) & Rounds & Strength \\
\hline MD5 & 128 & 512 & 64 & Weak - Password Files \\
\hline SHA-0 & 160 & 512 & 80 & Weak \\
\hline SHA-1 & 160 & 512 & 80 & \begin{tabular}{l} 
Generally not recommended for Federal \\
Systems - Refer to NIST SP800-131A for \\
allowable uses.
\end{tabular} \\
\hline SHA-2 (224 or 256) & 224 or 256 & 512 & 64 & Acceptable, 256 recommended \\
\hline SHA-2 (384 or 512) & 384 or 512 & 1024 & 80 & All of the following are acceptable. \\
\hline SHA-512/224 & 224 & 1024 & 80 & Refer to NIST SP800-57 Part 1 \\
\hline SHA-512/256 & 256 & 1024 & 80 & \\
\hline SHA3-224 & 224 & 1600 & 1152 & \\
\hline SHA3-256 & 256 & 1600 & 1088 & \\
\hline SHA3-384 & 384 & 1600 & 832 & \\
\hline SHA3-512 & 512 & 1600 & 576 & \\
\hline
\end{tabular}
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions

\section*{Summary: Asymmetric Algorithms (primarily used for key transport/exchange)}
- RSA - is the Public Key Cryptography Standard \#1 (PKCS)
- Diffie-Hellman
- Elliptic Curve Cryptography
- ECDH (Elliptic-Curve Diffie-Hellman) for secure key exchange for symmetric cryptography, provides forward secrecy therefore compromise of long-term key does not affect past sessions
- ECDSA (Elliptic-Curve Digital Signature Algorithm) for digital signatures enabling authenticity and integrity of a message or certificate

\section*{Agenda}
\(\checkmark\) Team Project - It is not too early to get started...
\(\checkmark\) Case Study 1
\(\checkmark\) Cryptography terminology
\(\checkmark\) Symmetric Key Cryptography
\(\checkmark\) Symmetric stream cryptography
\(\checkmark\) Symmetric block cryptography
\(\checkmark\) Key sharing problem
\(\checkmark\) Public Key Cryptography
\(\checkmark\) Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
\(\checkmark\) RSA algorithm
\(\checkmark\) Hybrid-Cryptography
\(\checkmark\) Perfect Forward Secrecy
\(\checkmark\) Where do cryptographic controls go in the FedRAMP System Security Plan
\(\checkmark\) Brief review: Hashing \& Digital Signatures

\section*{Quiz}

Which control is the BEST way to ensure that the data in a file have not been changed during transmission?
a) Reasonableness check
b) Parity bits
c) Hash values
d) Check digits

The PRIMARY reason for using digital signatures is to ensure data:
a) confidentiality
b) integrity
c) availability
d) Timeliness

Which of the following provides the GREATEST assurance for database password encryption?
a) Secure hash algorithm-256 (SHA-256)
b) Advanced encryption standard (AES)
c) Secure Shell (SSH)
d) Triple data encryption standard (3DES)

Email message authenticity and confidentiality is BEST achieved by signing the message using the:
a) Sender's private key and encrypting the message using the receiver's public key
b) Sender's public key and encrypting the message using the receiver's private key
c) Receiver's private key and encrypting the message using the sender's public key
d) Receiver's public key and encrypting the message using the sender's private key```


[^0]:    https://security.googleblog.com/2011/11/protecting-data-for-long-term-with.html

