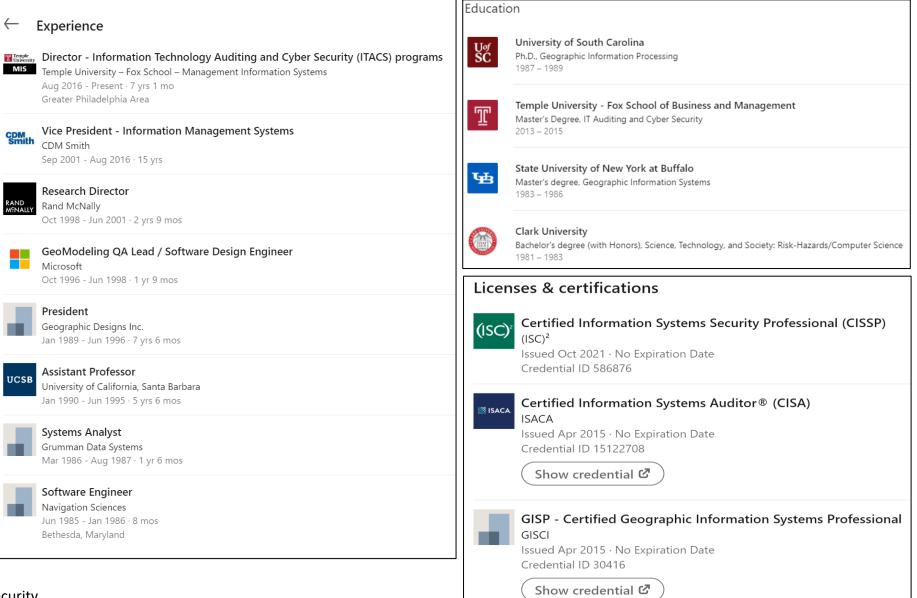
MIS5214 – Security Architecture

Unit 1

- Welcome and Introductions
- Course Introduction Goals
- Introductory Terminology
- The Threat Environment
- •Next Week...


Instructor

David Lanter

Director - Information Technology Auditing and Cyber Security Programs

Philadelphia, Pennsylvania · 500+ connections · Contact info

Course Goals – Security Architecture

Learn about how organizations

- Align their IT security capabilities with their business goals and strategy
- Plan, design and develop enterprise security architectures
- Assess IT system security architectures and capabilities

Objectives

- 1. Learn key Enterprise Security Architecture concepts
- 2. Develop an understanding of contextual, conceptual, logical, component, and physical levels of security architectures and how they relate to one another
- 3. Learn how security architectures are planned, designed and documented
- 4. Gain an overview of how security architectures are evaluated and assessed
- 5. Gain experience working as part of a team, developing and delivering a professional presentation

Course Web Site

Welcome to Security Architecture

Course

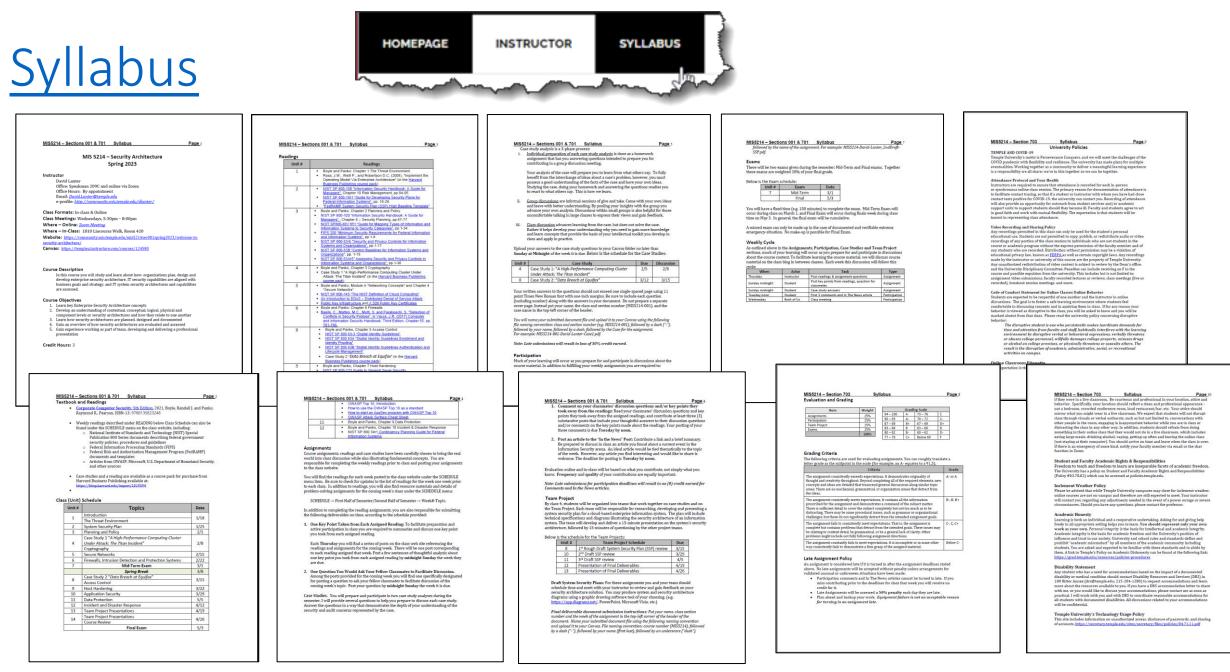
In this course you will study and learn about how organizations plan, design and develop enterprise security architecture, align their IT security capabilities with its business goals and strategy, and assess IT system security architectures and capabilities.

Objectives

- 1. Learn key Enterprise Security Architecture concepts
- 2. Develop an understanding of contextual, conceptual, logical, physical and component levels or security architectures and how they relate to one another
- 3. Learn how security architectures are planned, designed and documented
- 4. Gain an overview of how security architectures are evaluated and assessed
- 5. Gain experience working as part of team, developing and delivering a professional presentation

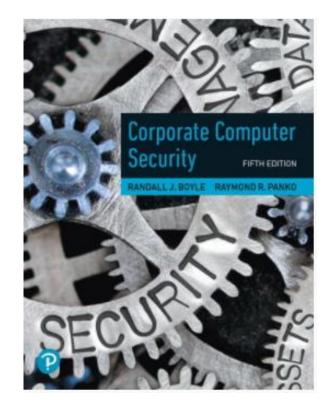
https://community.mis.temple.edu/mis5214sec001spring2024/welcome-to-security-architecture/

WEEKLY DISCUSSIONS

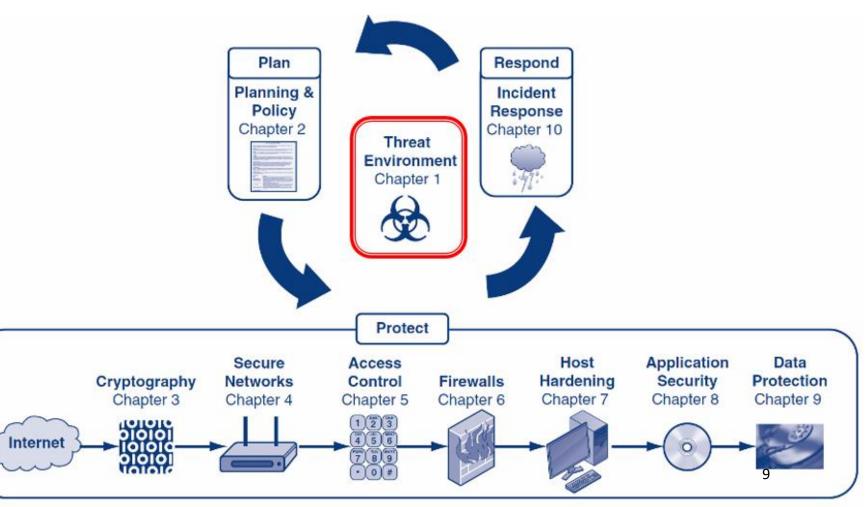

01 – Introduction (1)

01 – Threat Environment (2)

Course Web Site


	Security Architecture 5 5214.701 = Spring 2024 = David Lanter
HOMEPAGE INSTRUCTOR SYLLABUS DELIVERABLES HARVARD	COURSEPACK ZOOM MEETING
Welcome to Security Architect	WEEKLY DISCUSSIONS
Course	> 01 – Introduction (1)
In this course you will study and learn about how organizations plan, des enterprise security architecture, align their IT security capabilities with its strategy, and assess IT system security architectures and capabilities.	
Objectives	
 Learn key Enterprise Security Architecture concepts Develop an understanding of contextual, conceptual, logical, phys levels or security architectures and how they relate to one another Learn how security architectures are planned, designed and docur Gain an overview of how security architectures are evaluated and a Gain experience working as part of team, developing and deliverin presentation 	mented assessed

https://community.mis.temple.edu/mis5214sec701spring2024/welcome-to-security-architecture/



			Unit #	Readings
extbook and Rea	adings		1	 Boyle and Panko: Chapter 1 The Threat Environment Ross, J.W., Weill P., and Robertson D.C. (2008), "Implement the Operating Model Via Enterprise Architecture" (in the <u>Harvard Business Publishing course pack</u>) NIST SP 800-100 "Information Security Handbook: A Guide for
NIST Special Publication 800-18	eveloping Security			Managers", Chapter 10 Risk Management, pp.84-95 NIST SP 800-18r1 "Guide for Developing Security Plans for Federal Information Systems", pp. 18-26 "FedRAMP System Security Plan (SSP) High Baseline Template"
Corporate Computer	deral Information		3	 Boyle and Panko, Chapter 2 Planning and Policy <u>NIST SP 800-100</u> "Information Security Handbook: A Guide for <u>Managers"</u>, Chapter 8 – Security Planning, pp.67-77 <u>NIST SP800-60V1R1</u> "Guide for Mapping Types of Information and Information Systems to Security Categories", pp.1-34 <u>FIPS 200</u> "Minimum Security Requirements for Federal Information
RANDALLY BOYLE RAYMOND R. RANKO INFO	e ¹ Volume I: Guide for Mapping Types of Information and Information Systems to Security Categories Kerin Stine Rich Kissel William C. Barker			 and Information Systems", pp. 1-9 NIST SP 800-53r5 "Security and Privacy Controls for Information Systems and Organizations", pp. 1-17 NIST SP 800-53B "Control Baselines for Information Systems and Organizations", pp. 1-15 NIST SP 800-53Ar4" Assessing Security and Privacy Controls for Federal Information and Information Systems", pp. 1-28
SECURI IN	NIST Special Publication 800-53 Revision 5		4	 Boyle and Panko, Chapter 3 Cryptography Case Study 1 "A High-Performance Computing Cluster Under Attack: The Titan Incident" (in the <u>Harvard Business Publishing</u> <u>course pack</u>)
	Security and Privacy Controls for Information Systems and Organizations		5	 Boyle and Panko, Module A "Networking Concepts" and Chapter 4 "Secure Networks" <u>NIST SP 800-145 "The NIST Definition of Cloud Computing"</u> <u>An Introduction to DDoS – Distributed Denial of Service Attack</u> <u>Public Key Infrastructure and X.509 Public Key Certificates</u>
	FEDERAL INFORMATION PROCESSING STANDARDS PUBLICA Minimum Security Requirements for F Information and Information Systems	•	6	 Boyle and Panko: Chapter 6 Firewalls Basile, C., Matteo, M.C., Mutti, S. and Paraboschi, S. "Detection of Conflicts in Security Policies", in Vacca, J.R. (2017) Computer and Information Security Handbook, Third Edition, Chapter 55. pp 781-799.
	Computer Security Division Information Technology Laboratory Natonal Institute of Standards and Technology Gathersburg, MD 20089-8930 March 2006	FedRAMP® (High, Moderate, Low, LI-SaaS) Baseline System Security Plan (SSP)	8	 Boyle and Panko, Chapter 5 Access Control <u>NIST SP 800 63-3 "Digital Identity Guidelines"</u> <u>NIST SP 800 63A "Digital Identity Guidelines Enrollment and Identity Proofing"</u> <u>NIST SP 800 63B "Digital Identity Guidelines Authentication and Lifecycle Management"</u> Case Study 2 "Data Breach at Equifax" (in the <u>Harvard Business Publishing course pack</u>)
		for <insert csp="" name=""></insert>	9	Boyle and Panko, Chapter 7 Host Hardening NIST SP 800-123 Guide to General Sever Security
	The arange of wat	<insert cso="" name=""></insert>	10	Boyle and Panko, Chapter 8 Application Security OWASP Top 10, Introduction
	U.S. DEPARTMENT OF COMMERCE Carlos M. Guigeree, Servery National Institute of Standards and Technology	<insert version="" x=""> <insert dd="" mm="" yyyy=""></insert></insert>		How to use the OWASP Top 10 as a standard How to start an AppSec program with OWASP Top 10 OWASP Attack Surface Chart Shart
	William Jeffrey, Director		11	OWASP Attack Surface Cheat Sheet Boyle and Panko, Chapter 9 Data Protection
MIS 5214 Security Architecture		Controlled Unclassified Information into@fectramp.gov fedramp.gov	12	 Boyle and Panko, Chapter 10 Incident & Disaster Response NIST SP 800 34r1 <u>Contingency Planning Guide for Federal</u> Information Systems
				momuuon oyatema

Organization of textbook

How is this book organized?

MIS 5214 Security Architecture

Harvard Business Publishing Course Pack

- 1 Reading
- 2 Case Studies

https://hbsp.harvard.edu/import/1133495

2024 Available:	Jan 08, 2024 - May 01, 2024	itecture - Spring		Add Coursepack to Cart Purchase is required to access your materials Price \$1 for 3 required	
3 Items	CHAPTER Implement the Operati By: Jeanne W. Ross, Peter Weill, David C. R Expiration Date: Jul 8, 2024	obertson Length: 27 page(s)	Architecture		Required 1 Price: \$4.50
Case	MAIN CASE A High Performance Co Incident By: Mark-David J McLaughlin, W Alec Cram Expiration Date: Jul 8, 2024	, Janis L. Gogan Length: 7 page(s)	ttack: The Ti	itan	Required 1 Price: \$4.95
Case	MAIN CASE Data Breach at Equifax By: Suraj Srinivasan, Quinn Pitcher, Jonah Expiration Date: Jul 8, 2024				Required 1 Price: \$4.95

Class Schedule

Unit #	Topics	Date	
1	Introduction	1/17	
1	The Threat Environment	1/17	
2	System Security Plan	1/24	
3	Planning and Policy	1/31	
	Case Study 1 "A High-Performance Computing Cluster		
4	Under Attack: The Titan Incident"	2/7	
	Cryptography		
5	Secure Networks	2/14	
6	Firewalls, Intrusion Detection and Protection Systems	2/21	
7	Mid-Term Exam	2/28	
	Spring Break	3/6	
0	Case Study 2 "Data Breach at Equifax"		
8	Access Control	3/13	
9	Host Hardening	3/20	
10	Application Security	3/27	
11	Data Protection	4/3	
12	Incident and Disaster Response	4/10	
13	Team Project Presentations	4/17	
	Team Project Presentations		
14	Course Review	4/24	
	Final Exam	5/1	

Reading Assignments in Syllabus available in course'sMIS Community Website111213213334344554555667778811

MANAGEMENT INFORMAT	TION SYSTEMS	Security MIS 5214.701 S	Managers", Chapter 10 F NIST SP 800-18r1 "Guid Federal Information Syst "FedRAMP-High-Modera Security Plan (SSP) Tem 3 Boyle and Panko, Chapter NIST SP 800-100 "Information Managers", Chapter 8 – S NIST SP800-60V/1R1 "Guid Information Systems to cut and Information Systems", Systems	nation Security Handbook: A Guide f Risk Management, pp.84-95 le for Developing Security Plans for ems", pp. 18-26 ate-Low-LI SaaS-Baseline-System plate" r 2 Planning and Policy ation Security Handbook: A Guide fo Security Planning, pp.67-77 ide for Mapping Types of Information security Categories", pp.1-34 rity Requirements for Federal Inform , pp.1-9
OMEPAGE INSTRU	ICTOR SYLLABUS	DELIVERABLES HARVARD COURSEPACK	Systems and Organization NIST SP 800-53B "Contro Organizations", pp. 1-15	Baselines for Information Systems essing Security and Privacy Controls Organizations", pp.1-36
	Unit #	Reading	gs ar	formance Computing Cluster Under it" (in the <u>Harvard Business Publishin</u>
	1	 Boyle and Panko: Chapter 1 The Ross, J.W., Weill P., and Roberts Operating Model Via Enterprise A Business Publishing course pack 	Threat Environment son D.C. (2008), "Implement the Architecture" (in the <u>Harvard</u>	A "Networking Concepts" and Chap ST Definition of Cloud Computing" - Distributed Denial of Service Attack and X.509 Public Key Certificates r 6 Firewalls Mutti, S. and Paraboschi, S, "Detectiv cies", in Vacca, J.R. (2017) Compute Handbook, Third Edition, Chapter 5
	2	 NIST SP 800-100 "Information Se <u>Managers"</u>, Chapter 10 Risk Man NIST SP 800-18r1 "Guide for Dev <u>Federal Information Systems"</u>, pp <u>"FedRAMP-High-Moderate-Low-I</u> Security Plan (SSP) Template" 	ecurity Handbook: A Guide for nagement, pp.84-95 <u>veloping Security Plans for</u> p. 18-26 LI SaaS-Baseline-System	Handbook, Third Edition, Chapter 5 ter 5 Access Control ital Identity Guidelines" tal Identity Guidelines Enrollment an tal Identity Guidelines Authentication reach at Equifax" (in the <u>Harvard</u> urse pack) er 7 Host Hardening to General Sever Security
				er 8 Application Security

12

Grading

Item	Weight
Assignments	25%
Participation	25%
Team Project	25%
Exams	25%
	100%

Grading Scale				
94 - 100	Α	73 – 76	C	
90 – 93	A-	70 – 72	C-	
87 – 89	B+	<mark>67 – 6</mark> 9	D+	
83 - 86	В	63 – 66	D	
80 - 82	B-	60 - 62	D-	
77 – 79	C+	Below 60	F	

Grading - Assignments

1. One Key Point Taken from Each Assigned Reading

Post one or two sentences of thoughtful analysis about one key point you took from each assigned reading by **midnight Sunday** the week they are due

2. One Question You Would Ask Your Fellow Students to Facilitate Discussion

Grading - Participation

1. Comment on your classmates' discussion questions and/or key points they wrote about taking away from the readings

Contribute at least three (3) substantive posts that include your thoughtful answers to their discussion questions and/or comments on the key points made by your classmates about the readings. Your posting of your three comments is due **Tuesday by noon**.

2. Post an "In the News" article (link and brief summary)

Be prepared to discuss in class an article you found about a current event in the Information Security arena. An ideal article would be tied thematically to the topic of the week. However, any article you find interesting and would like to share is welcome. The deadline for posting is **Tuesday by noon**.

Grading - Case Studies

· 米

Teaching Case A high performance computing cluster under attack: the Titan incident

Journal of Information Technology Teaching Cases (2015) 5, 1-7 © 2015 JITTC Palgrave Macmilan Ali rights reserved 2043-8869/15

Mark-David J McLaughlin^{1,2}, W Alec Cram¹, Janis L Gogan¹

¹Bentley University, Waltham, USA; ²Cisco Systems, San Jose, USA

Correspondence: MDJMcLaughlin, Bentley University, 175 Forest St, Smith Technology Center, Waltham, MA 02452, USA. Tet + 978 206 0188; Fax + 978 1991 2949

Abstract

At the University of Oslo (UiO), CERT manager Margrete Reaum learned of a network attack on Titan, a high-performance computing cluster that supported research conducted by scientists at CERT and other research institutions across Europe. The case describes the incident response, investigation, and clarification of the information security events that took place. As soon as Baaum learned of the attack, she ordered that the system be disconnected from the Internet to contain the damage. Next, she launched an investigation, which over a few days pieced together logs from previous weeks to identify suspicious activity and locate the attack vector. Reaum hopes to soon return Titan to its prior safe condition. In order to do so, she must decide what tasks still need to be completed to validate the systems and determine if it is safe to reconnect it to the Internet. She must also consider further steps to improve her team's ability to prevent, detect, and respond to similar incidents in the future. This case is designed for an undergraduate or graduate information security (infosec) class that includes students with varied technical and business backgrounds. The case supports discussion of technical and managerial infosec issues in interorganizational systems - a topic that is currently underrepresented in major case collections. aurnal of Information Technology Teaching Cases (2015) 5, 1-7. doi:10.1057/jittc.2015.1; published online 17 March 2015

Keywords: information security; incident response; risk management; inter-organizational collaboration; IT governance; high performance computing

Introduction

On the morning of 12 August, Margete Raaum, Computing Emergency Response Team (CEPT) manager at the University of Oslo (Universitett i Oslo, UIO), sat down to drink a cup of strong coffee and reflect on the events of the previous two and a half days. Around 5 of clock in the evening on 9 August, Raaum had returned to Norway after attending the annual DefCon security conference in Las Vegas³ with several colleagues. She was drowsy from jet-lag when her phone had rung and an engineer in UiO's research computing operations group tok her, 'Um, I think there might have been a break,' no the Titan cluter.'

Raaum now thought, That may have been the understatement of the year's as the took another sig of coffee. UiO was a member of the Nordic DataGrid Facility (NDGF) of the European Grid Infrastructure (EGD. Than, a high-performance computing duster, was a shared resource that supported astrophysics research and other scientific initiatives sponsored by NDGF and/or EGL. The computational power supplied by

titan was essential to molecular biology research, DNA esquencing analysis, and petroleum reservoir simulations. Many scientists took advantage of Than's estensive computational power by writing their own custom applications for their research. Ensuring the security of the Titan cluster was one of Rasum's many responsibilities, and she was well aware of a troubling worldwide trend: cybercriminals frequently broke into various organizations' networks to stead usemaneing and password combinations (credentials) and then (capitalzoin on other sites) used the stolen credentials to attack higher value tragets. So, instead of cathing up on the sleep the other mand mode.

News of the attack had triggered a maelstrom of international activity as Raaum and her team tried to determine what happened, contain the damage, and plan an orderly return to full operation. At Raaum's direction, the Titan master node

This document is authorized for educator review use only by David Lanter, Temple University until August 2017. Copying or posting is an intringement of copyrigh Permissions@hbsp.harvard.edu or 617.783.7860

HARVARD	BUSINESS	SCHOGL

9-118-031

SURAJ SRINIVASAN QUINN PITCHER IONAH S. GOLDBERG

¥

Data Breach at Equifax

It was October 4, 2017, and Richard Smith, the former CEO of Equifax, had just finished testifying before the U.S. Senate Committee on Banking, Housing, and Urbar A'fifairs. He had been called before the Committee to address the data breach Equifax had experienced between May and July earlier that year, which exposed personal information about over 145 million Americans. Smith had resigned just over a week earlier, the latest casualty of the massive crisis at the credit reporting agency, which had claimed the jobs of two other executives and spawned insider trading allegations, investigations, and dozens of lawsuits.^a

Observers were critical of Equifax's cyberscruity preparedness, as reports surfaced that the company had been notified about the software volnerability exploited by its attacker in early March but had failed to fix it on time. They were also critical of the company's response to the breach, especially the delay between when Equifax discovered the breach (July 29) and when it disclosed it to the public (September 7). Others questioned why the board was not notified until three weeks after the breach was uncovered and vhether the board's response was adequate.

Smith's replacement, interim CEO Paulino do Rego Barros, Jr., and the board needed to respond to these criticisms. Facing an onslaught of lawsuits and investigations, Equifax had to improve its cybersecurity systems and convince both consumers and public officials that it remained a reliable steward of sensitive intermation. Accomplishing this, however, appeared easier said than done.

Equifax

Founded in 1999, Equifax Inc. (Equifax) was a U.S. credit reporting company. Along with Experian and TransUnion, Equifax was one of the three main credit reporting companies, responsible for collecting and providing information on income and credit-worthiness to organizations and

⁴ The multiple congressional investigations into the breach dys the Senate Committee on Banking, Housing, and Urhan Alfairs, the Senate Committee on Honefand Security and Covernment Alfairs, and the House of Representatives Committee on Overagith and Covernment Reform) produced a number of reports detailing the causes and consequences of the exfittation of covagament data. These reports will be referenced throughout the case as the products of Corgensional investigations.

Professor Starij Sinivasan and Research Associates Quinn Pitcher and Jonah S. Goldinerg prepared this case. This case was developed from published sources. Funding for the development of this case was provided by Harvard Bainess-School and not by the company. HIS cases are developed solely as the basis for class discussion. Cases are not intended to serve as endowments, sources of primary data, or illustrations of effective or inference.

Copyright © 2017, 2018, 2019 President and Fellows of Harvard College. To order copies or request permission to reproduce materials, call 1-800-545-7686, write Harvard Business School Publishing, Boston, MA 02165, or go to www.hbspharvard.edu. This publication may not be digitized, photocopied, or otherwise reproduced, posted, or transmitted, without the permission of Harvard Business School.

This document is authorized for educator review use only by DAVID LANTER, Temple University until Aug 2022. Copying or posting is an infringement of copyright. Permissions@hbsp.harvard.edu or 617.783.7860

HOMEPAGE	INSTRUCTOR	SYLLABUS	DELIVERABLES	HARVAR	RD COURSEPACK	ZOOM M
			Assignments			
Wel	come to	Secu	Case Studies		Case Study 1 – A H Performance Con	
Course			Participation		Cluster Under Atta Titan Incident	
In this cou	ırse you will study	and learn abo	Team Project		Case Study 2 – Da	ita
enterprise	e security architec	ture, align their	IT security capabi	ilities with	Breach at Equifax	

Case study analysis

- 1. Individual preparation
- 2. Group discussion
- 3. Class discussion

Grading - Team Projects

By class 4, students will be organized into teams that work together on case studies and on the Team Project

Each team will be responsible for researching, developing and presenting a system security plan (SSP) for a cloud-based enterprise information system

SSP will include technical specifications and diagrams illustrating the logical network architecture and security architecture of an information system

Teams will develop and deliver a 15-minute presentation on the system's security architecture, followed by questioning by the other project teams

Unit #	Team Project Schedule	Due
8	1 st Rough Draft System Security Plan (SSP) review	3/13
10	2 nd Draft SSP review	3/27
11	3 rd Draft SSP review	4/3
12	Presentation of Final Deliverables	4/17
13	Presentation of Final Deliverables	4/24

Grading - Exams

Unit #	Exam	Date
7	Mid-Term	2/28
	Final	5/1

Weekly Cycle

When	Actor	Task	Туре
Thursday	Instructor	Post readings & assignment questions	Assignment
Sunday midnight	Student	Post key points from readings, question for classmates	Assignment
Sunday midnight	Student	Case study answers	Assignment
Tuesday noon	Student	Post 3 comments and In The News article	Participation
Wednesday	Both of Us	Class meeting	Participation

Agenda

✓ Welcome and Introductions

✓ Course Introduction Goals

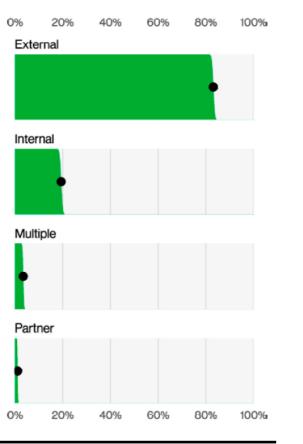
- Introductory Terminology
- The Threat Environment
- •Next Week...

Introductory Terminology

"Information security" is protection of...

- Confidentiality, integrity, and availability ("CIA") of data and information
- Data, information and information systems from unauthorized...
 - 1. Access, use, disclosure = Confidentiality
 - 2. Modification or distruction = Integrity
 - 3. Disruption or loss of access = Availability

Terminology: Compromises


- Successful attacks
- Also called incidents
- Also called breaches (not breeches)

Terminology: Countermeasures

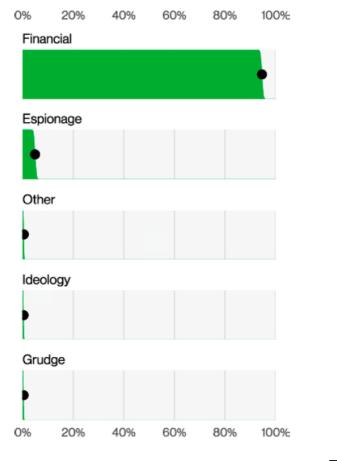
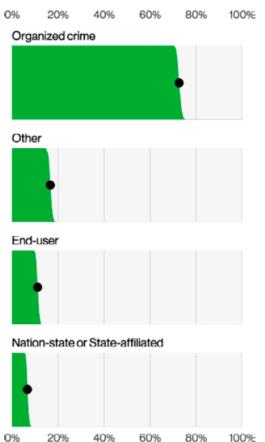
- Tools used to thwart attacks
- Also called: safeguards, protections, mitigations and controls
- Types of countermeasures:
 - Preventative controls
 - For reducing risk
 - Deterrent controls preventative controls for discouraging violations
 - Detective controls
 - For identifying violations and incidents
 - Corrective controls
 - Attempt to reverse the impact of an incident
 - Compensating controls
 - Alternative controls when a primary control is not feasible

		Incidents				Breaches			
	Industry	Total	Small (1–1,000)	Large (1,000+)	Unknown	Total	Small (1–1,000)	Large (1,000+)	Unknown
	Total	16,312	694	489	15,129	5,199	376	223	4,600
	Accommodation (72)	254	4	2	248	68	4	1	63
2023 Data Breach Investigations Report	Administrative (56)	38	8	14	16	32	8	11	13
investigations neport	Agriculture (11)	66	1	5	60	33	0	3	30
	Construction (23)	87	7	1	79	66	4	1	61
	Education (61)	496	63	15	418	238	28	8	202
	Entertainment (71)	432	13	3	416	93	10	1	82
зок —	Finance (52)	1,829	70	30	1,729	477	38	18	421
	Healthcare (62)	522	28	15	479	433	23	15	395
	Information (51)	2,105	45	110	1,950	380	23	19	338
20К —	Management (55)	9	1	0	8	9	1	0	8
	Manufacturing (31–33)	1,814	37	24	1,753	259	18	15	226
	Mining (21)	25	2	0	23	13	2	0	11
10K	Other Services (81)	143	7	2	134	100	6	1	93
	Professional (54)	1,396	176	54	1,166	421	85	32	304
	Public Administration (92)	3,270	87	110	3,073	582	48	39	495
2005 2010 2015 2020	Real Estate (53)	83	15	5	63	59	10	2	47
	Retail (44–45)	404	62	44	298	191	33	28	130
	Transportation (48-49)	349	13	25	311	106	8	13	85
	Utilities (22)	117	12	6	99	33	3	3	27
	Wholesale Trade (42)	96	42	22	32	53	23	11	19
vorizon	Unknown	2,777	1	2	2,774	1,553	1	2	1,550
verizon	Total	16,312	694	489	15,129	5,199	376	223	4,600

Table 2. Number of security incidents and breaches by victim industry and organization size

Figure 11. Threat actors in breaches (n=5,177)

- External actors were responsible for 83% of breaches, while Internal ones account for 19%.
- Internal actors are responsible for intentional harm, and twice as likely to be responsible for Error actions.

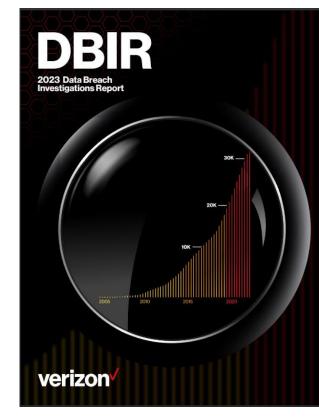
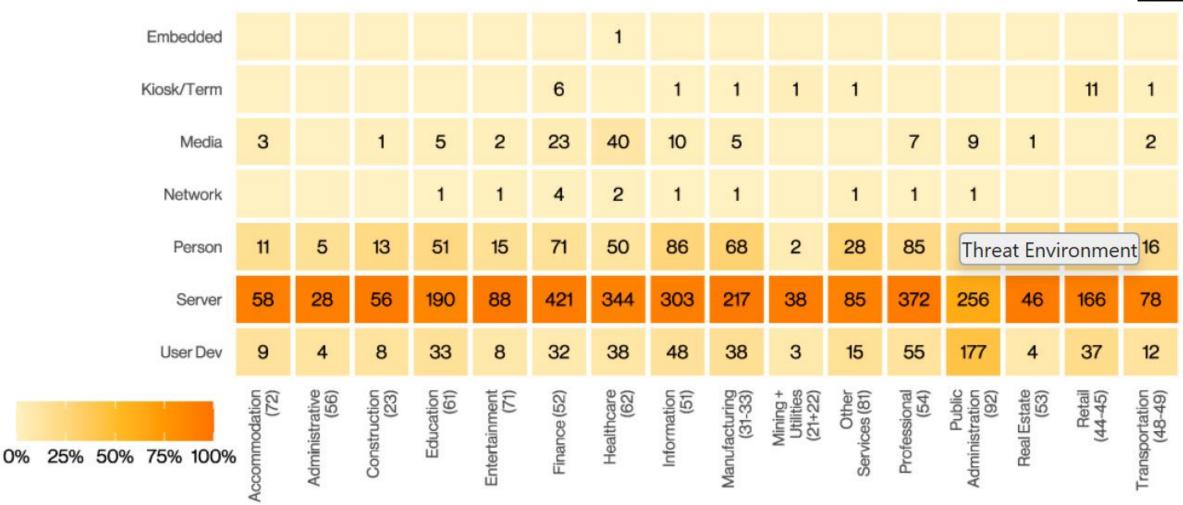

Figure 12. Threat actor Motives in breaches (n=2,328)

Figure 13. Threat actor Varieties in breaches (n=2,489)

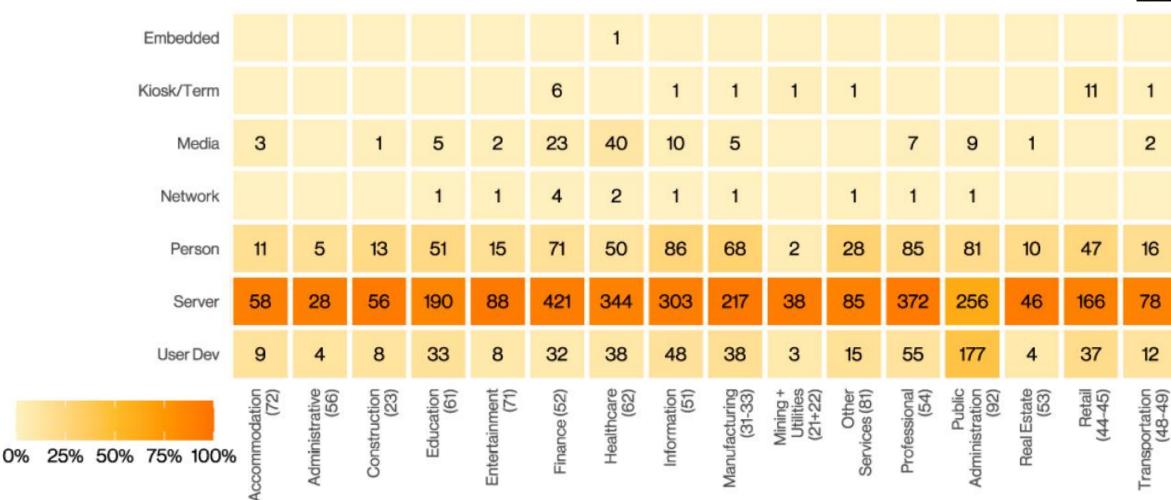

End-users are organization employees mostly involved in breaches caused by:

- Misuse ("internal malicious activity"), and
- Errors ("accidents").

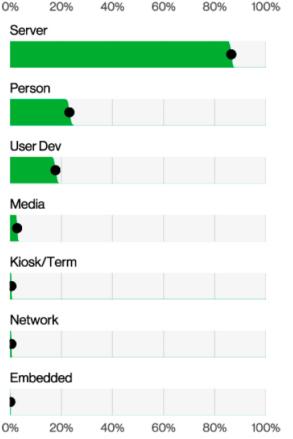
Threat Environment– Breaches by Industry

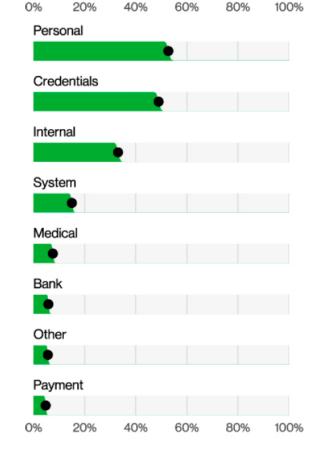
DBIR Mediater

The 2023 DBIR examined 16,312 incidents, of which 5,199 were confirmed data breaches


Threat Environment– Breaches by Industry

																verizon
Environmental																
Error	2	8	5	50	17	127	89	52	17	6	13	21	164	4	5	14
Hacking	31	12	27	95	50	251	175	201	123	17	58	227	248	31	88	46
Malware	37	19	31	94	31	86	107	Threat	Enviro	nment-	- Bread	hes by	/ IIO	30	124	56
Misuse	4	1	4	15	4	38	64	19	11	3	4	15	15		8	2
Physical	2		2	3		8	16	4	2	1	3	5	4	1	12	3
Social	11	5	13	48	14	70	46	80	62	2	28	78	79	10	43	16
0% 25% 50% 75% 100%	Accommodation (72)	Administrative (56)	Construction (23)	Education (61)	Entertainment (71)	Finance (52)	Healthcare (62)	Information (51)	Manufacturing (31-33)	Mining + Utilities (21+22)	Other Services (81)	Professional (54)	Public Administration (92)	Real Estate (53)	Retail (44-45)	Transportation (48-49)


The 2023 DBIR examined 16,312 incidents, of which 5,199 were confirmed data breaches


Threat Environment– Breaches by Industry

DBIR Medical Verticot

The 2023 DBIR examined 16,312 incidents, of which 5,199 were confirmed data breaches

Figure 19. Assets in breaches (n=4,433)

Figure 21. Top Confidentiality data varieties in breaches (n=5,010)

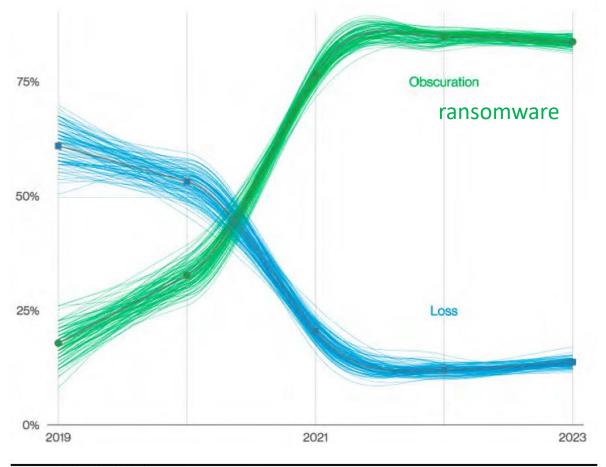


Figure 22. Availability variety over time

DBIR

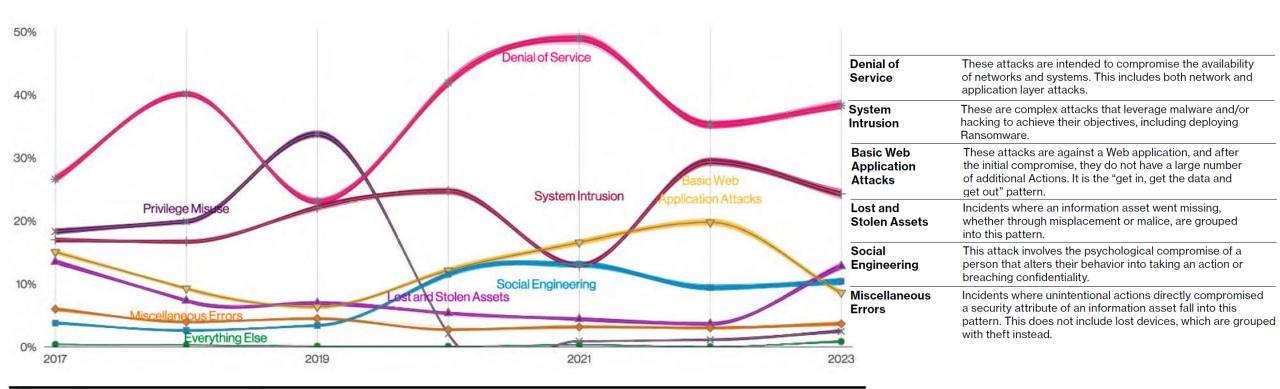


Figure 25. Patterns over time in incidents

What are the implications for security architecture?

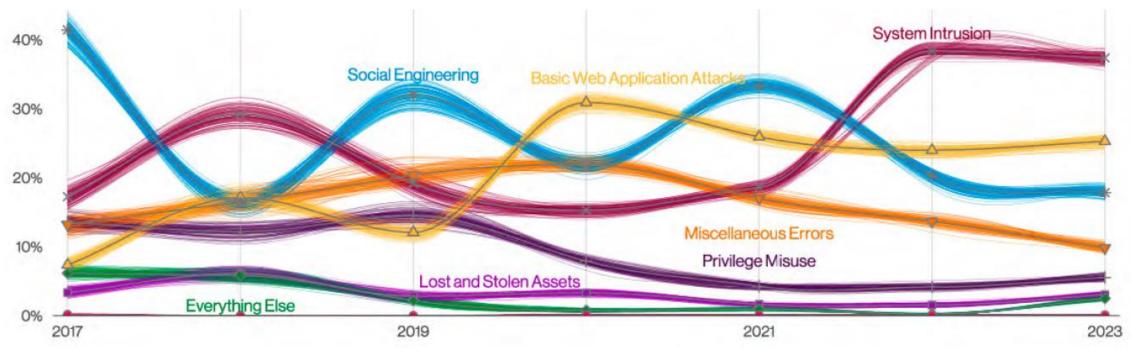
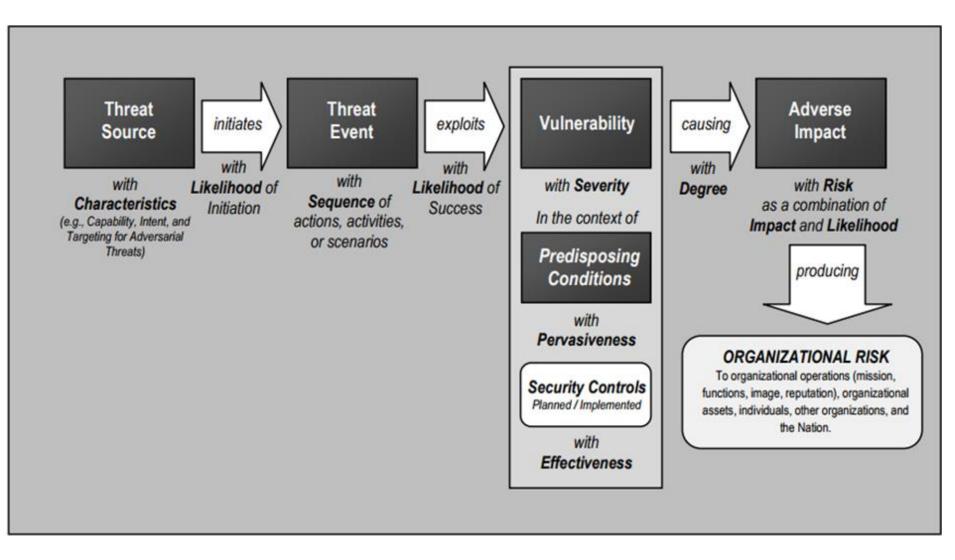



Figure 26. Patterns over time in breaches

What are the implications for security architecture?

Security architects think about the interactions among threats, information systems' vulnerabilities, impacts and risks

The Threat Environment

NIST SP 800-30r1 "Guide for Conducting Risk Assessments", page 66

Type of Threat Source	Description	Characteristics
ADVERSARIAL - Individual - Outsider - Insider - Trusted Insider - Trusted Insider - Group - Ad hoc - Established - Organization - Competitor - Supplier - Partner - Customer - Nation-State	Individuals, groups, organizations, or states that seek to exploit the organization's dependence on cyber resources (i.e., information in electronic form, information and communications technologies, and the communications and information-handling capabilities provided by those technologies).	Capability, Intent, Targeting
ACCIDENTAL - User - Privileged User/Administrator	Erroneous actions taken by individuals in the course of executing their everyday responsibilities.	Range of effects
STRUCTURAL - Information Technology (IT) Equipment - Storage - Processing - Communications - Display - Sensor - Controller - Environmental Controls - Temperature/Humidity Controls - Temperature/Humidity Controls - Power Supply - Software - Operating System - Networking - General-Purpose Application - Mission-Specific Application	Failures of equipment, environmental controls, or software due to aging, resource depletion, or other circumstances which exceed expected operating parameters.	Range of effects
ENVIRONMENTAL - Natural or man-made disaster - Fire - Flood/Tsunami - Windstorm/Tornado - Hurricane - Earthquake - Bombing - Overrun - Unusual Natural Event (e.g., sunspots) - Infrastructure Failure/Outage - Telecommunications - Electrical Power	Natural disasters and failures of critical infrastructures on which the organization depends, but which are outside the control of the organization. Note: Natural and man-made disasters can also be characterized in terms of their severity and/or duration. However, because the threat source and the threat event are strongly identified, severity and duration can be included in the description of the threat event (e.g., Category 5 hurricane causes extensive damage to the facilities housing mission-critical systems, making those systems unavailable for three weeks).	Range of effects

Adversarial (i.e. purposeful) threat sources

Type of Threat Source	Description	Characteristics
ADVERSARIAL - Individual - Outsider - Insider - Trusted Insider - Privileged Insider - Group - Ad hoc - Established - Organization - Competitor - Supplier - Partner - Customer - Nation-State	Individuals, groups, organizations, or states that seek to exploit the organization's dependence on cyber resources (i.e., information in electronic form, information and communications technologies, and the communications and information-handling capabilities provided by those technologies).	Capability, Intent, Targeting

NIST SP 800-30r1 "Guide for Conducting Risk Assessments", page 66

MIS 5214 Security Architecture

What type of Hacker are you?

"You need to decide if you're going to aspire to safeguarding the common good or settle for pettier goals. Do you want to be a mischievous, criminal hacker or a righteous, powerful defender?

...the best and most intelligent hackers work for the good side. They get to exercise their minds, grow intellectually, and not have to worry about being arrested. They get to work on the forefront of computer security, gain the admiration of their peers, further human advancement in the name of all that is good, and get well paid for it."

Grimes, R. (2017), Hacking the Hacker, John Wiley and Sons

Most Hackers Aren't Geniuses

"...readers often assume" bad-guy hackers are super smart, "...because they appear to be practicing some advanced black magic that the rest of the world does not know. In the collective psyche of the world, it's as if 'malicious hacker' and 'super-intelligence' have to go together.

A few are smart, most are average, and some aren't very bright at all, just like the rest of the world. Hackers simply know some facts and processes that other people don't, just like a carpenter, plumber, or electrician."

Grimes, R. (2017), <u>Hacking the Hacker</u>, John Wiley and Sons

Defenders are Hackers Plus

"If we do an intellectual comparison alone, the defenders on average are smarter than the attackers. A defender has to know everything a malicious hacker does plus how to stop the attack. And that defense won't work unless it has almost no end-user involvement, works silently behind the scenes, and works perfectly (or almost perfectly) all the time.

Show me a malicious hacker with a particular technique, and I'll show you more defenders that are smarter and better. It's just that the attacker usually gets more press." It's time for equal time for the defender!

Grimes, R. (2017), <u>Hacking the Hacker</u>, John Wiley and Sons

Hackers are Special

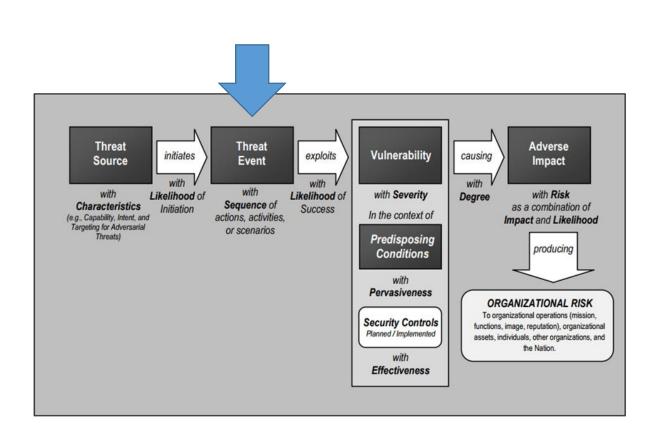
While not all are super-smart, "they all share a few common traits:"

- Broad intellectual curiosity
- Willingness to try things outside the given interface or boundary
- Not afraid to make their own way
- Usually they are life hackers:
 - Hacking all sorts of things beyond computers
 - Questioning the status quo and exploring all the time
- Most useful trait:
 - Persistence
 - Malicious hackers look for defensive weaknesses
 - Both malicious hackers and defenders are looking for weaknesses, just from opposite sides of the system
 - Both sides participate in an ongoing war with many battles, wins and losses. The most persistent side wins

Grimes, R. (2017), Hacking the Hacker, John Wiley and Sons

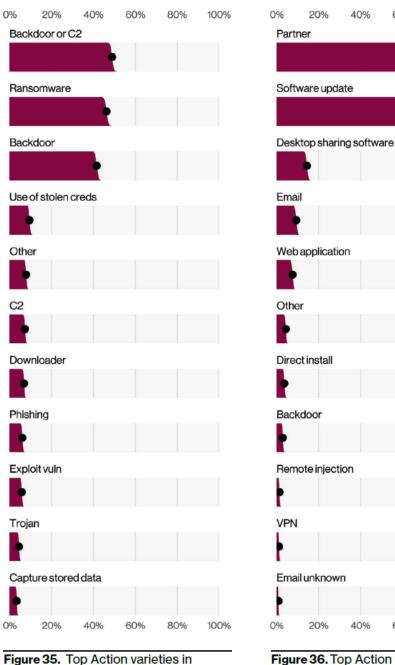
MIS 5214 Security Architecture

The Secret to Hacking


"If there is a secret to how hackers hack, it's that there is no secret to how they hack. It's a process of learning the right methods and using the right tools for the job.... There isn't even one way to do it. There is, however, a definitive set of steps that describe the larger, encompassing process"

Hacking Methodology Model

- 1. Information gathering ("reconnaissance")
- 2. Penetration
- 3. Optional: Guaranteeing future easier access
- 4. Internal reconnaissance
- 5. Optional: Movement
- 6. Intended action execution (e.g. data exfiltration)
- 7. Optional: Covering Tracks


Grimes, R. (2017), <u>Hacking the Hacker</u>, John Wiley and Sons

MIS 5214 Security Architecture

C2 = Command & Control malware

System Intrusion incidents (n=5,212)

Figure 36. Top Action vectors in System Intrusion incidents (n=3,403)

60%

60%

80%

100%

80%

100%

1. Attacker sends spear phishing e-mail

Custom malware is installed

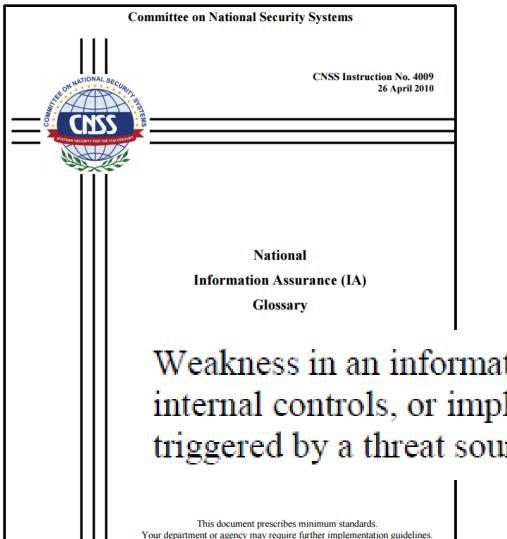
2. Victim opens attachment

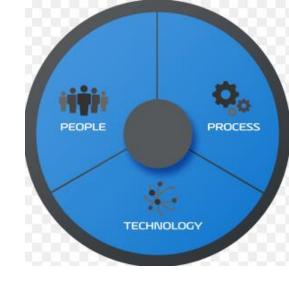
Anatomy of an Attack

(MANDIANT, 2015)

- 3. Custom malware communicates to control web site
 - Pulls down additional malware
- 4. Attacker establishes multiple backdoors

5. Attacker accesses system


- Dumps account names and passwords from domain controller
- 6. Attacker cracks passwords
 - Has legitimate user accounts to continue attack undetected
- 7. Attacker reconnaissance
 - Identifies and gathers data
- 8. Data collected on staging server
- 9. Data ex-filtrated


MJS 5214 Security Architecture

10. Attacker covers tracts

- Deletes files
- Can return any time

What is a Vulnerability?

Weakness in an information system, system security procedures, internal controls, or implementation that could be exploited or triggered by a threat source.

[CNSSI 4009]

MIS 5214 Security Architecture

Vulnerabilities can be classified by asset class

- Physical examples
 - Buildings in environmental hazard zones (e.g. low floor in flood zone)
 - Unlocked and unprotected doors to data center
 - Unreliable power sources
- Technical examples
 - Hardware susceptibility to humidity, dust, soiling, unprotected storage
 - Software insufficient testing, lack of audit trail, poor or missing user authentication and access control
 - Data unencrypted transfer or storage, lack of backup
 - Network Unprotected communication lines, insecure architecture
- Organizational examples
 - Employees inadequate screening and recruiting process, lack of security awareness and training
 - Business Processes Lack of regular audits
 - Disaster Recovery Plans Lack of security and IT related business continuity plans

What is a Risk?

A measure of threat

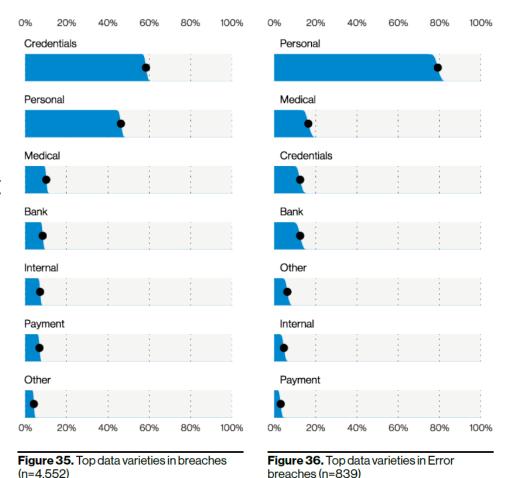
Potential loss resulting from:

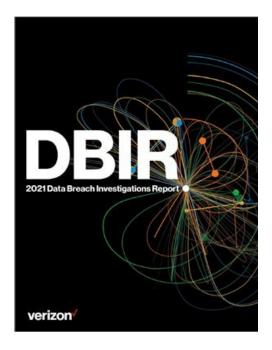
- Unauthorized access, use, disclosure
- Unauthorized modification or destruction
- Loss of timely access

...to an enterprises' information

Can be expresses in **quantitative** and/or **qualitative** terms

Assessing risk – <u>quantitative method</u>


- 1. Estimate potential losses (SLE)—This step involves determining the single loss expectancy (SLE). SLE is calculated as follows:
 - Single loss expectancy (SLE) = Asset value X Exposure factor


Items to consider when calculating the SLE include the physical destruction or theft of assets, the loss of data, the theft of information, and threats that might cause a delay in processing. The exposure factor is the measure or percent of damage that a realized threat would have on a specific asset.

- 2. Conduct a threat analysis (ARO)—The purpose of a threat analysis is to determine the likelihood of an unwanted event. The goal is to estimate the annual rate of occurrence (ARO). Simply stated, how many times is this expected to happen in one year?
- 3. Determine annual loss expectancy (ALE)—This third and final step of the quantitative assessment seeks to combine the potential loss and rate per year to determine the magnitude of the risk. This is expressed as annual loss expectancy (ALE). ALE is calculated as follows:
 - Annualized loss expectancy (ALE) = Single loss expectancy (SLE) X Annualized rate of occurrence (ARO)

Steps in a risk assessment methodology

- 1. What are the business assets ?
- 2. What possible threats put the business assets at risk ?
- 3. Which vulnerabilities and weaknesses may allow a threat to exploit the assets ?
- 4. For each threat, if it materialized, what would be the business impact on the assets ?

Assessing risk – <u>qualitative method</u>

		POTENTIAL IMPA	ст
Security Of	ojective LOW	MODERATE	нідн
Confidentiality Preserving authories restrictions on in access and disclinicluding means protecting person privacy and pro- information. [44 U.S.C., SEC.	orized disclosure of inform nformation could be expected to losure, a limited adverse ef organizational opera organizational assets individuals.	have could be expected to h fect on a serious adverse effect tions, organizational operation	ave could be expected to have ct on a severe or catastrophic ons, adverse effect on
<i>Integrity</i> Guarding agains information mod or destruction, a includes ensurin information non repudiation and authenticity. [44 U.S.C., SEC.	dification and ag a limited adverse eff organizational opera organizational assets individuals.	have could be expected to h fect on a serious adverse effect tions, organizational operation	ave could be expected to have ct on a severe or catastrophic ons, adverse effect on
<i>Availability</i> Ensuring timely reliable access t of information. [44 U.S.C., SEC.	o and use information system of be expected to have	n or an or use of information or could information system co be expected to have a ct on serious adverse effect tions, organizational operation	or an or use of information or an information system could be expected to have a severe or catastrophic adverse effect on

FIPS PUB 199

FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION

Standards for Security Categorization of Federal Information and Information System

Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8900

February 2004

U.S. DEPARTMENT OF COMMERCE Donald L. Evans, Secretary

TECHNOLOGY ADMINISTRATION Phillip J. Bond, Under Secretary for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arden L. Bement, Jr., Director

Security Architecture

A comprehensive and rigorous method to plan, design and describe current and desired future structure and behavior of an organization's:

- Business sub-units
- Processes and Personnel
- Information security systems
- Information systems' security

...so they align with the organization's core goals and strategic direction

Wikipedia: <u>https://en.wikipedia.org/wiki/Enterprise_information_security_architecture</u>

Security Architecture

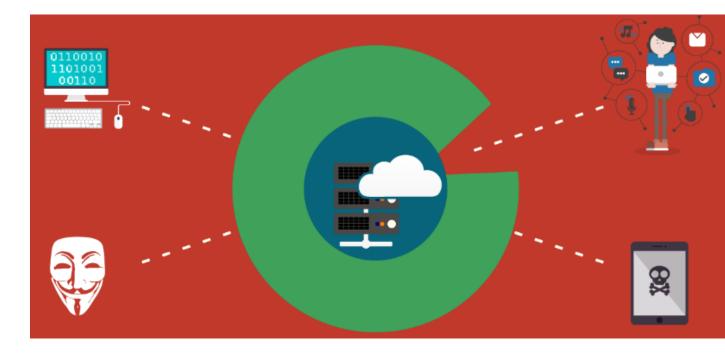
"...the art and science of designing and supervising the construction of business systems, usually business information systems, which are:

- Free from danger, damage, etc.
- Free from fear, care, etc.
- In safe custody
- Not likely to fail
- Able to be relied upon
- Safe from attack"

Sherwood et al. (2005) Enterprise Security Architecture: A Business-Driven Approach

Defenders must be perfect

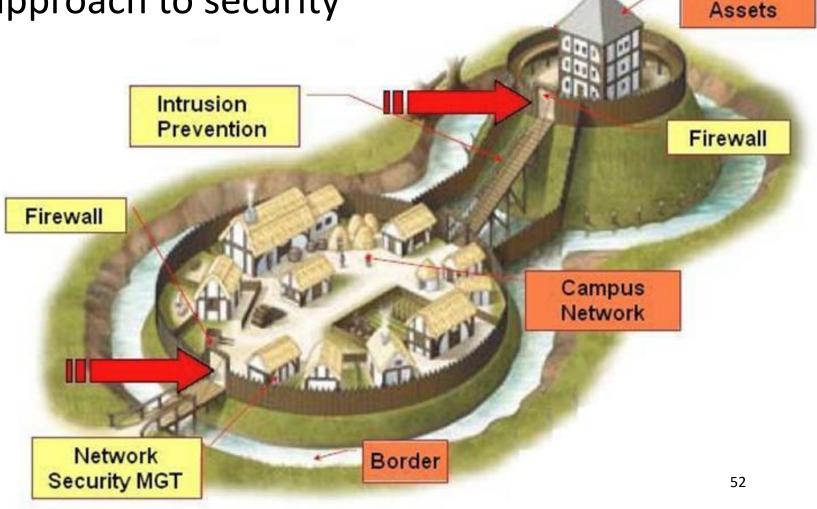
"One mistake by the defender essentially renders the whole defense worthless"


...every computer and software program must be patched, every configuration appropriately secure, and every end-user perfectly trained. Or at least that is the goal.

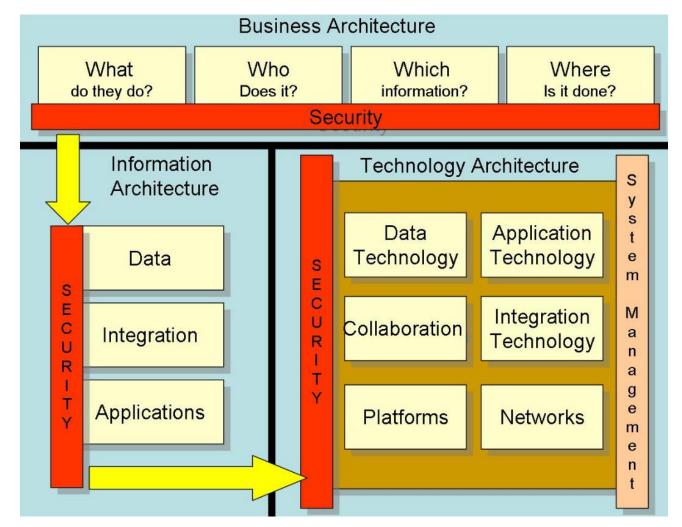
The defender knows that applied defenses may not always work or be applied as instructed, so they create "defense-in-depth" layers."

Grimes, R. (2017), <u>Hacking the Hacker</u>, John Wiley and Sons

Security Architecture


Thinking about security architecture enables understanding enterprise information systems the way attackers do – as large diverse attack surfaces

https://graquantum.com/blog/cyber-basics-cyber-attack-surface/


Defense in Depth

- Also known as:
 - Layered security approach to security

Critical

Enterprise Information and Security Architecture

Huxham, H. (2006) "Own view of Enterprise Information Security Architecture (EIS))Framework" Wikipedia: <u>https://en.wikipedia.org/wiki/Enterprise_information_security_architecture</u>, accessed 2017-1-19

Business Architecture		
nformation Architecture	Risk	
Applications Architecture	Management Architecture	
nfrastructure Architecture	Inferma	

Sherwood et al. (2005) Enterprise Security Architecture: A Business-Driven Approach

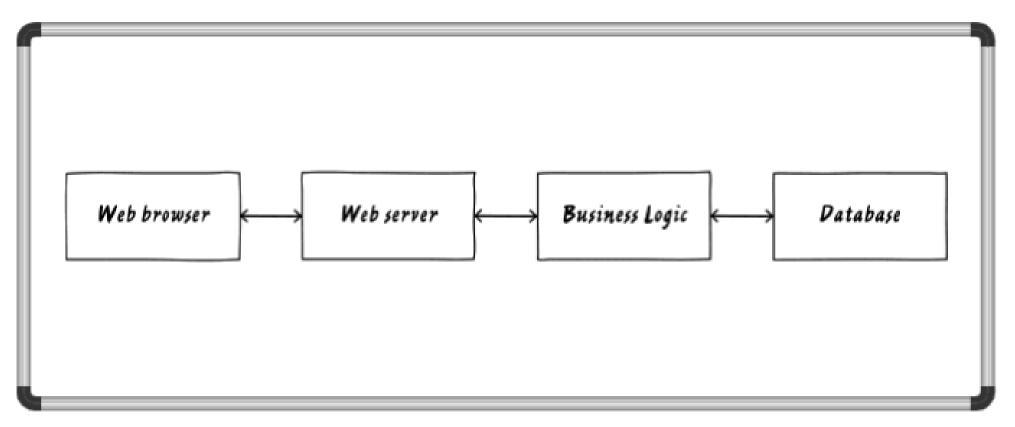
MIS 5214 Security Architecture

Security architecture questions

- 1. What is the system that is/has being/been built?
- 2. What can go wrong with it once it is built?
- 3. What should be done about those things that can go wrong?
- 4. Did you do a good job in your analysis?

Threat Modeling: Designing for Security, Adam Shostack, 2014

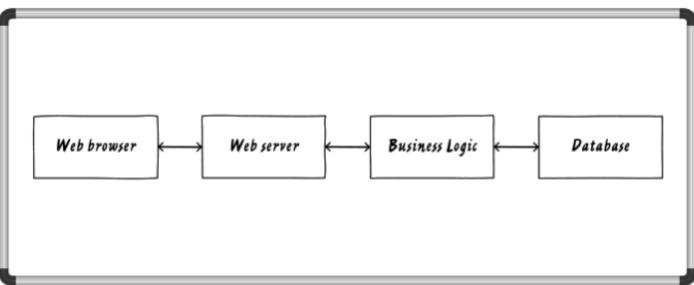
Security architecture framework

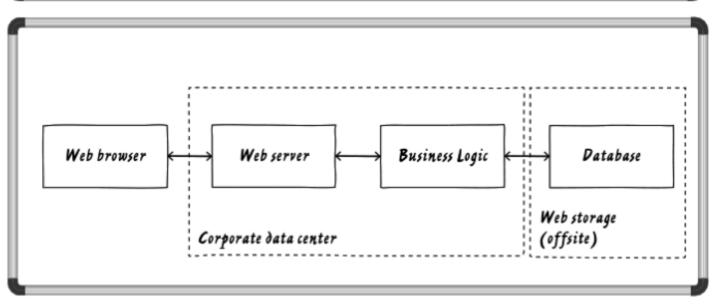

- 1. Model the system that is being built, deployed, or changed
- 2. Find threats using that model
- 3. Address (i.e. mitigate/control) the threats
- 4. Validate the mitigations for completeness and effectiveness

Threat Modeling: Designing for Security, Adam Shostack, 2014

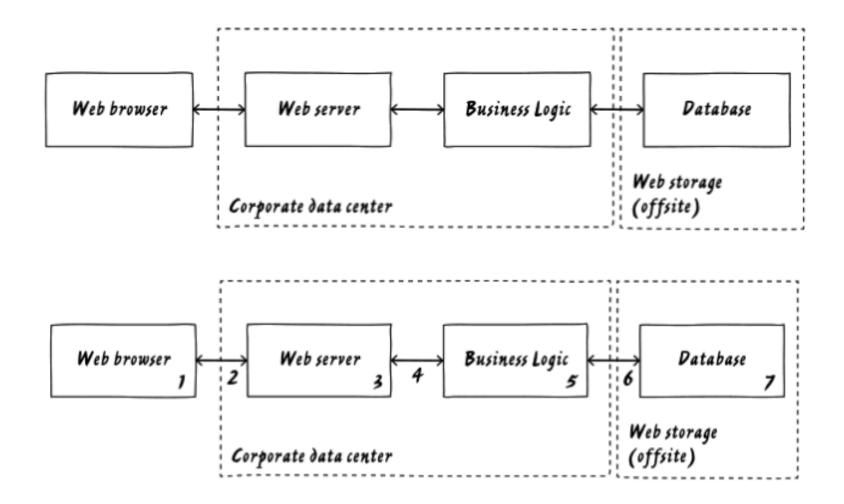
What is the system that is or has been built?

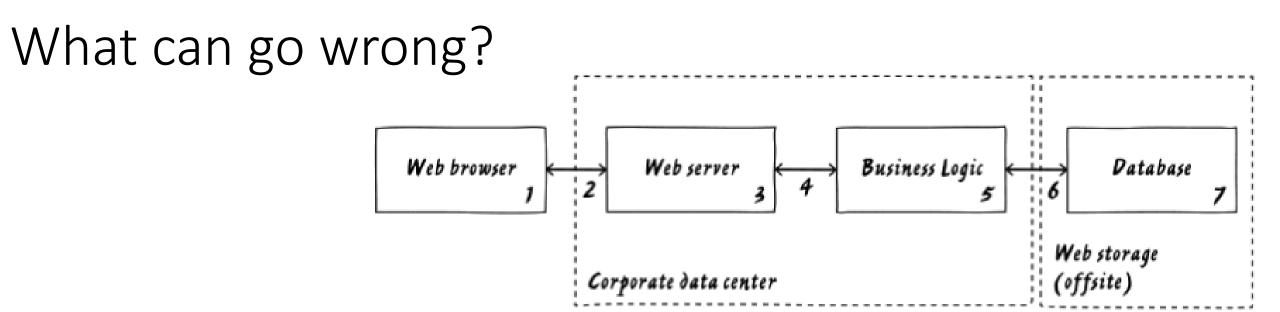
- Draw a picture of the information system...
- Analyze the picture to see what can go wrong ?


Threat Modeling: Designing for Security, Adam Shostack, 2014


Draw and identify trust boundaries (also known as "attack

surfaces") in the system


...these are found wherever different people can access and control different parts of the system


- Organizational boundaries
- Different physical computers or virtual machines
- Different subsystems
- Different access points or network interfaces
- Almost anywhere there will/should be different privileges

What can go wrong? Where are the attack surfaces in this system?

- How do you know the web browser is used by the person you expect?
- Is it OK for data to go from one box to the next without being authenticated?
- Is it OK for data to go from one box to the next without being encrypted?
- What happens if someone made unauthorized modifications to data in the database?

What can go wrong?

STRIDE

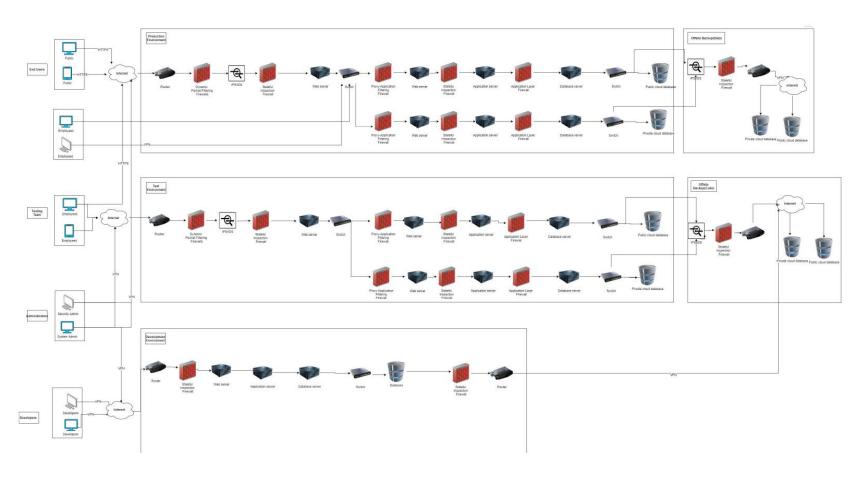
- Model of threats developed by Microsoft for identifying security architecture threats
- Is a mnemonic for 6 categories of threats:

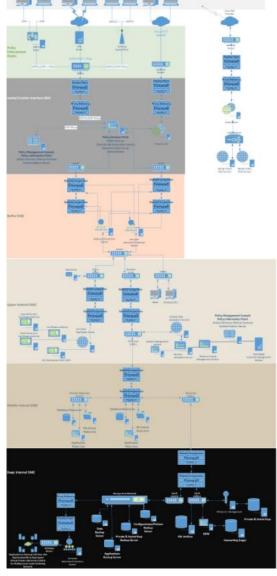

Threat	Desired property		
Spoofing	Authenticity		
Tampering	Integrity		
Repudiation	Non-repudiability	Web browser 1 2 Web server 3 4 Business Logic 5 6	> Databas
Information disclosure	Confidentiality		
Denial of Service	Availability		Veb storage 'offsite)
Elevation of Privilege	Authorization	··································	

STRIDE Created by Microsoft to help developers identify threats to security architecture of their systems Is a mnemonic for 6 categories of threats

- <u>Spoofing</u> is pretending to be something or someone you are not
- Tampering is modifying something you are not supposed to modify
 - E.g. data packets in motion on the network, bits on disk, bits in memory...
- <u>Repudiation</u> means claiming you did not do something (regardless of whether you did or did not)
- Information Disclosure is exposing information to people who are not authorized to see it
- <u>Denial of Service</u> are attacks design to prevent the system's service availability
 - E.g. Crashing it, making it unusably slow, filling all of its storage, ...
- <u>Elevation of Privileges</u> ...

STRIDE – What can go wrong?


- **Spoofing:** Someone might pretend to be a customer, is there a way to authenticate users?
- Tampering: Can someone tamper with the data in the system's backend?
- **Repudiation:** Any preceding actions might require figuring out what happened
 - Are there system logs? Is the right information being logged? Are the logs protected against tampering?
- Information Disclosure: Can anyone connect to the database and read/write data?
- **Denial of Service:** What happens if 300,000 customers show up a once at the website?
 - What if the system goes down?
- Elevation of Privileges: Perhaps the web front end is the only place customers should access, but what enforces that?
 - What prevents them from connecting directly to the business logic server, or uploading new code?
 - What controls access to the database? What happens in an employee wants to edit the system files or makes a mistake?



What kinds of techniques are used for managing threats (i.e. managing risk) ?

- Avoid
- Accept
- Transfer
- Mitigate

Team Project for the course involves creating and analyzing security architecture diagrams

Useful tools for the course

https://app.diagrams.net/

🚹 Untitled Diagram - diagrams.net 🗙 🕂		- 🗆 X
← → C 🔒 app.diagrams.net		🕀 🖈 🖉 🖻 🗯 D :
Untitled Diagram File Edit View Arrange Extras Help		Share
🛅 • 100% • Q. Q. m ~ Î 🖷 🖷 🗞 🗷	$\mathbf{v} \equiv \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v}$	\mathbb{Z} \square \otimes
Network ×		Diagram Style ×
		View
vn 💷 🖻 😩 🖀		✓ Grid 10 pt ⊕
© ≑ 1 ≑ ¢		Page View
		Options
👚 🕒 🇐 🔛 🔛		Connection Arrows
		Connection Points
More Results		✓ Guides
r Scratchpad ? + Ø ×		Paper Size
		US-Letter (8,5" × 11") V
Drag elements here		Portrait O Landscape
r General		Edit Data
Text text		Clear Default Style
DUSER		
+ More Shapes : Page-1 +		

Useful tools for the course

Microsoft Azure education site

https://azureforeducation.microsoft.com/devtools

\equiv Microsoft Azure	s م	℅ Search resources, services, and docs (G+/)					ଡ ଼ ନ
Home > Education							
Generation Software	\$						
 Overview 		Product category : All Operating System : Al	System type : 64 bit Product language	: English, Multilanguage			
🔀 Get started	3 Items						
Learning resources	Name ↑↓	Product category ↑↓	Operating System \uparrow_{\downarrow}	System type ↑↓		Langua	ge ↑↓
💼 Roles	Visio Professional 2021	Productivity Tools	Windows	64 bit		English	
🚽 Software	Visio Professional 2019	Productivity Tools	Windows	64 bit		English	
💔 Learning	Visio Professional 2016	Productivity Tools	Windows	64 bit		English	
🖹 Templates							
My account							
👗 Profile							
Need help?							

Support

Readings for next week...

Unit 02 – System Security Plan

Readings

- <u>NIST SP 800-100 "Information Security Handbook: A Guide for Managers"</u>, Chapter 10 Risk Management, pp.84-95
- <u>NIST SP 800-18r1 "Guide for Developing Security Plans for Federal Information</u> <u>Systems"</u>, pp. 18-26
- <u>""FedRAMP-High-Moderate-Low-LI_SaaS-Baseline-System Security Plan (SSP) Template</u>", Table of Contents and Intro to sections

MIS 5214 Security Architecture

Questions for next week...

One Key Point Taken from Each Assigned Reading -

HOMEPAGE	INSTRUCTOR	SYLLABUS	SCHEDULE	DELIVERABLES	HARVARD COURSEPACK	GRADEBOOK	
02 - Syste	em Security P	lan				WEEKLY DISC	USSION
NIS	F SP 80 0	0-100, (Chapte	er 10 "Ri	sk	> 01 – Introduction (1)	
			-			› 01 – Threat Environm	ient (2)
				ok from this assigi	ied reading.	 02 – System Security 	Plan (5
FILED UNDE	R: 02 - SYSTEM SECUR	ITY PLAN				Fox School of temple university	of Bus
TAGGED WI	ΓH:						
NIS Sec	F SP 800 urity Pla	0-18r1 ' ans for	'Guide Federa	e for Dev al Inforn	eloping nation		
Syst	ems"						
JANUARY 6.	2020 BY DAVID LANTE	R — LEAVE A COMI	MENT (EDIT)				
FILED UNDE	R: 02 - SYSTEM SECUP TH:	ITY PLAN					
"Fec Higł	RAMP : Baseli	System ne Ten	n Secu Iplate'	rity Plar	(SSP)		
JANUARY 6.	2020 BY DAVID LANTE	R — LEAVE A COM	MENT (EDIT)				
FILED UNDE TAGGED WI	R: 02 - SYSTEM SECUP FH:	ITY PLAN					
My o Plar	question Is to dis	1 abou cuss w	t Syste ⁄ith my	em Secu classm	rity ates		
JANUARY 6,	2020 BY DAVID LANTE	R — LEAVE A COM	MENT (EDIT)				
FILED UNDE TAGGED WI	IR: 02 - SYSTEM SECUP TH:	ITY PLAN					
In Ti	ne New	s					
	2020 BY DAVID LANTE	-	MENT (EDIT)				

MIS 5214 Security Architecture

FILED UNDER: 02 - SYSTEM SECURITY PLAN TAGGED WITH: Agenda

✓ Welcome and Introductions
 ✓ Course Introduction Goals
 ✓ Introductory Terminology
 ✓ The Threat Environment
 ✓ Next Week...

Unit - #1

MIS5214 – Security Architecture