
Unit #10
MIS5214

Application Security

Agenda

• In the News

• Team Project Guidance

• Distributed Systems

• Example Cloud-based N-Tier SOA Application Development System

• Control Stages, Objectives, Application Security Testing

• Additional Best Practices

In The News

• Section 001

• Section 701

MIS 5214 Security Architecture 3

https://community.mis.temple.edu/mis5214sec001spring2024/in-the-news-15/#comments
https://community.mis.temple.edu/mis5214sec701spring2024/in-the-news-15/#comments

Team Project Guidance

You and your team are:
• Acting as the CSP (Cloud Service Provider)
• Seeking PA (Preliminary Authorization) for your information

system
• Responsible for:

1. Developing and documenting the system security architecture
for your information system

2. Developing a System Security Plan (SSP) to document the
security architecture of your information system

3. Presenting and submitting your SSP to an internal senior
management review team

MIS 5214 Security Architecture 4

https://community.mis.temple.edu/mis5214sec001spring2024/team-project-overview/

MIS 5214 Security Architecture 5

https://www.fedramp.gov/documents-templates/

https://www.fedramp.gov/documents-templates/

MIS 5214 Security Architecture 6

Team Project Guidance

Determine the name and purpose of an information system
your firm will develop and host in the cloud as a Software as a
Service (SaaS) Cloud Service Offering (CSO) to support one or
more client federal governmental agencies.
Using the FedRAMP® (High, Moderate, Low, LI-SaaS) Baseline
System Security Plan (SSP) template:

• Document the name of your system’s cloud service offering (CSO)
on the cover of your SSP, in Table 3.1 of Section 3 of your SSP, and
in the page header that will display on each page of your SSP

• Document the purpose of your cloud-based information system in
Section 2 of your SSP

MIS 5214 Security Architecture 7

https://community.mis.temple.edu/mis5214sec001spring2024/team-project-overview/
https://community.mis.temple.edu/mis5214sec001spring2024/files/2024/03/FedRAMP-High-Moderate-Low-LI-SaaS-Baseline-System-Security-Plan-SSP.docx
https://community.mis.temple.edu/mis5214sec001spring2024/files/2024/03/FedRAMP-High-Moderate-Low-LI-SaaS-Baseline-System-Security-Plan-SSP.docx

Team Project Guidance

Use Table 4, Table 5, and/or Table 6 in NIST SP 800-60
Volume 1 to assist you in identifying the information types your
system will contain.

• Refer to FIPS 199 and use NIST SP 800-60 Volume 2 to determine
the security categorization of the information types contained within
your information system

• Document the FIPS 199 categorizations in the SSP’s Table K.1 in
Appendix K and your CSO’s overall FIPS 199 security categorization
in Table 3.1 of Section 3 of your SSP

MIS 5214 Security Architecture 8

https://community.mis.temple.edu/mis5214sec001spring2024/files/2020/12/nistspecialpublication800-60v1r1.pdf
https://community.mis.temple.edu/mis5214sec001spring2024/files/2020/12/nistspecialpublication800-60v1r1.pdf
https://community.mis.temple.edu/mis5214sec001spring2024/files/2024/03/NIST_FIPS-199.pdf
https://community.mis.temple.edu/mis5214sec001spring2024/files/2019/01/nistspecialpublication800-60v2r1.pdf

Team Project Guidance

Draft a logical network diagram of the information systems
with security architecture needed to provide information
assurance while developing, testing, and providing information
system services to government clients of your information
services.
Use your logical network diagram to document your
information system’s security architecture in your SSP’s
Section 8.1 Illustrated Architecture.
Describe important security elements illustrated in your
diagram in SSP Section 8.2 Narrative.

MIS 5214 Security Architecture 9

Team Project Guidance

Be sure to include in your logical network architecture diagram
illustrations of:

• Boundaries superposed to enable visualization of the data flows
interconnecting systems

• Data flows depicting the different types of system users and the
paths of data between each user type across the internet and
system boundary in and out and through the logical model of the
system.

MIS 5214 Security Architecture 10

Network/Boundary Diagram

MIS 5214 Security Architecture 11

Where are the interconnections
among systems?

Data Flow Diagrams

MIS 5214 Security Architecture 12

…answer the question:
 How does the data flow from/to each type of user and through the system?

Data Flow Diagrams

MIS 5214 Security Architecture 13

…answer the question:
 How does the data flow from/to each type of user and through the system?

Data Flow Diagrams

MIS 5214 Security Architecture 14
…answer the question:
 How does the data flow from/to each type of user and through the system?

Data Flow Diagrams

MIS 5214 Security Architecture 15

…answer the question:
 How does the data flow from/to each type of user and through the system?

Team Project Guidance

You may use https://app.diagrams.net, Visio, CSET (Cyber
Security Evaluation Tool), or another drawing tool to draw the
logical network diagram of the information system
infrastructure

MIS 5214 Security Architecture 16

https://app.diagrams.net/
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.us-cert.gov%2Fics%2FDownloading-and-Installing-CSET&data=05%7C02%7Cdavid.lanter%40temple.edu%7C9ba2de373fba4e23cb3608dc4d271527%7C716e81efb52244738e3110bd02ccf6e5%7C0%7C0%7C638470077448936774%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=HgRjFMNse4ng46ty56lgXe9jrnm4PQvmhCW4eYImREY%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.us-cert.gov%2Fics%2FDownloading-and-Installing-CSET&data=05%7C02%7Cdavid.lanter%40temple.edu%7C9ba2de373fba4e23cb3608dc4d271527%7C716e81efb52244738e3110bd02ccf6e5%7C0%7C0%7C638470077448936774%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=HgRjFMNse4ng46ty56lgXe9jrnm4PQvmhCW4eYImREY%3D&reserved=0

Team Project Guidance

Use appropriate network symbols and annotation in your architectural
diagram, include:

• Information System Servers: e.g. Web Server(s), Application Server(s), Database
Server(s), File Server(s), …

• Security zones (i.e. security domain areas) based on security categorizations
• Appropriately placed switches, routers, firewalls, Intrusion Detection System(s)

and/or Intrusion Protection Systems.
• Be sure to label each type of firewall, IDS, IPS, located throughout your diagram
• Identify the system’s boundaries, locations of interconnection(s) to and through

the Internet to/from users and other information systems accessed across the
Internet

• Identify where and how various user groups including clients and remote staff
access your organization various IT system via the Internet and illustrate the data
flow and protocols used (e.g. HTTPS, VPN, etc.) between each user group and the
information system

• Strongly consider having 3 parallel cloud-based system environments to support
your system: Development System, Test System, and Production System

MIS 5214 Security Architecture 17

Team Project Guidance
• Create and deliver in-class a PowerPoint presentation that introduces the

name and purpose your Cloud Based Information System, your systems
user’s and how it is used, and the security architecture of the system.

• Deliverables: (Hand in your assignment individually via Canvas. Each member
of the team should submit an identical copies of the following documents in
PDF format with your names on the files and in the documents via your
individual Canvas accounts:

1. PowerPoint presentation that supports a 15-minutes presentation delivered by your team in-class that introduces the name
and purpose your Cloud Based Information System, your systems user’s and how it is used, and the security architecture of
the system.

2. System Security Plan (with completed sections and attachments as detailed above)
3. Logical system security architecture diagram(s): Including: System’s logical network diagram with boundaries,

interconnections and data flows to/from users and other/supporting systems, and security architecture components

4. 360 Degree Review – On a single page, list the members of your team including yourself and briefly describe each team
member’s contribution to developing and delivering the deliverables

• Each team not presenting will interview/question the SSP presentation
team to help identify and clarify possible weaknesses in the information
system’s security architecture being presented.

MIS 5214 Security Architecture 18

Team Project Guidance

Instructions for Appendix A: Only select and complete one technical
control family

MIS 5214 Security Architecture 19

From NIST SP 800-18r1 Guide for Developing
Security Plans for Federal Information Systems

Team Project Guidance

Appendix G - Information System Contingency Plan:

Only provide a GANTT chart for your plan (a schedule of high-level
tasks with labor estimate in person-hours) for completing Appendix G
which is an Information System Contingency Plan (ISCP) based on
FedRAMP ISCP Template

MIS 5214 Security Architecture 20

http://community.mis.temple.edu/mis5214sec004spring2020/files/2020/03/SSP-A06-FedRAMP-ISCP-Template-6.docx

Agenda

✓In the News

✓Team Project Guidance

• Distributed Systems
• File Server Architecture
• Client/Server Architecture
• N-Tier Architecture
• Cloud Architecture
• Service Oriented Architecture (SOA)

• Example Cloud-based N-Tier SOA Application Development System

• Control Stages, Objectives, Application Security Testing

• Additional Best Practices

File Server architecture

File server: a device that manages
file operations and is shared by
each client PC attached to a LAN

• The simplest configuration
• Applications and data control take

place on the client computers.

• The file server simply holds shared
data

Limitations of File Server Architecture
• Excessive data movement

• Entire dataset must be transferred, instead of individual data records

• Need for powerful client workstations
• Each client workstation must devote memory and computational resources to

run a complete standalone application

• Decentralized data control
• Data file concurrency control, recovery, and security are complicated

Client-Server Architecture

LAN-based computing environment in which
• A central database server or engine performs all database commands sent to

it from client workstations

• Application programs on each client concentrate on user interface functions

Increased efficiency and control over File server

• Server only sends specific data, not entire files,
which saves on network bandwidth

• Computing load is carried out by the server
• Increasing security
• Decreasing computing demand on the clients

Application processing is divided between client and server
Client manages the user interface
Database server is responsible for data storage and query
processing

N-Tier Architecture

N-Tier Applications

Where’s the programming code?

N-Tier Applications

Service Oriented Architecture (SOA)

A software architecture
• Business processes broken down into

individual components (services)

• Designed to achieve desired results for
the service consumer

• Application

• Another service

• Person (user)

Principles:
• Reusability

• Interoperability

• Componentization
Using SOA, multiple applications can invoke multiple
services

N-Tier Applications using SOA in the cloud

N-Tier “Fat Client” Application using SOA

Presentation
Layer

• Defines the visual aspects of
the Graphical User Interface

• Organized using views,
components, renderers, and
controls

• Defines layouts, colors, fonts,
sizing, etc.

Application Layer
in a “fat client”

• Defines the underlying
application logic that runs
within the browser (“client”)

• Contains a client-side object
model and object managers

• Organizes and handles
interactive events resulting
from the user’s clicks on the
browser screens

• Makes and manages service
operation calls to exchange
data with the server

Service Layer

• Defined in terms of service
operations (“services”) and
data transfer objects (DTOs)
– Services provide, derive,

and persist data objects
– DTOs

• Package data into bundles
as inputs and outputs of
service operations

• Allow client-side software
to be loosely coupled to
the server-side software

• Some DTOs have multiple
versions to support “rich”
vs. “lite” data transfers

Domain / Repository
Layer

• Contains logic for
creating. retrieving and
updating objects
exchanged with the
database and client
application
• Loosely coupled to client

apps via service layer
interface

• Loosely coupled to
database via the mapping
layer

Mapping Layer

• Contains bidirectional
mapping between the
objects in domain layer and
data records stored in
database’s tables

• Exchange of data between
application’s objects <->
database table rows
implemented with
nHibernate

• Exposes the database to the
domain layer with
repositories supporting
object queries via HQL

Database Layer

• Provides permanent
storage of data in a
relational model

• Implemented using
Microsoft SQL Server
relational database
management system

Development Infrastructure Example…
Examples of supporting systems

Source Control

• Web-based hosting of repository service for
distributed access and version control of
programming code

• Enables maintaining versioned shareable
software code and design artifacts with check-
in/check-out and maintenance capabilities

Issue Tracking System

• Enables organization, prioritization, triage,
planning and tracking resolution of issues,
bugs, and project tasks

Continuous Integration &
Continuous Deployment

Helps development team make system builds, triggered by
either

• A commit of updated source code to the version control system

• Scheduling directive

• A dependency on the completion of another component’s build

• Developer kicking off the build using a URL to make the request

Development Infrastructure Example…

VPC = virtual private cloud

Application 3+ Tier
Architecture example

Note that there are many possibly vulnerable versions of
3rd party libraries and software components used in the
browser and web/application server

https://nvd.nist.gov/vuln/search

Angular
Passport
Swagger

Mapserver
…

https://nvd.nist.gov/vuln/search
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Angular&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=passport&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=swagger&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=mapserver&search_type=all&isCpeNameSearch=false

Agenda

✓In the News
✓Team Project Guidance
✓Distributed Systems

✓File Server Architecture
✓Client/Server Architecture
✓N-Tier Architecture
✓Cloud Architecture
✓Service Oriented Architecture (SOA)

✓Example Cloud-based N-Tier SOA Application Development System
• Control Stages, Objectives, Application Security Testing
• Additional Best Practices
• Team Project Guidance

Shifting Security Left – that is: earlier in the software
development life cycle

MIS 5214 Security Architecture 44

Information System Development Control Stages
Control over applications is conducted at every stage and begins at the
start of the development of the information system

This takes 2 basic forms:

1. Control over the development process itself

2. Ensuring adequate business controls are built into the finished
product

Major control stages would include:
• System design
• System development
• System operation
• System utilization

Control Objectives for Business Information Systems

1. Input control objectives
2. Processing control objectives
3. Output control objectives

Control Objectives for Business Information Systems

Input control objectives
• All transactions are

o initially and completely recorded
o completely and accurately entered into the system
o entered only once

• Controls in this area may include:
o Pre-numbered documents
o Control total reconciliation
o Data validation
o Activity logging
o Document scanning and retention for checking
o Access authorization
o Document cancellation (e.g. after entry)

Control Objectives for Business Information Systems
Processing control objectives

• Approved transactions are accepted by the system and processed
• All rejected transactions are reported, corrected, and re-input
• All accepted transactions are processed only once
• All transactions are accurately processed
• All transactions are completely processed

• Controls over processing may include:
• Control totals
• Programmed balancing
• Reasonableness tests
• Segregation of duties
• Restricted access
• File labels
• Exception reports
• Error logs
• Concurrent update control

Control Objectives for Business Information Systems
Output control objectives focus on

• Hardcopy
• File outputs and output record sets stored in tables
• Online query files and outputs stored in tables

• Controls over output may include:
• Assurance that the results of input and processing are output
• Output is available to only authorized personnel
• Complete audit trail
• Output distribution logs

Control Objectives for Business Information Systems
Computer program control objectives focus on

• Integrity & Security of programs and processing
• Prevention of unwanted changes

Typical computer program controls include:

• Ensuring adequate design and development
• Ensuring adequate testing
• Controlled transfer of programs (among machines, from version control, …)
• Ongoing maintainability of systems
• Use of formal SDLC
• User involvement
• Adequate documentation
• Formalized testing plan
• Planned conversion
• Use of post-implementation reviews (see CISA chapter)
• Establishment of a quality assurance (QA) function
• Involvement of internal auditors

Testing of these controls require IT auditors to seek evidence
regarding their adequacy and effectiveness….

Software security, includes threat and attack
surface analysis…

Attack surface is what is available to be used by an
attacker against the application itself

Goal of attack surface analysis is to identify and
reduce the amount of code and functionality
accessible to untrusted users

Development team should reduce the attack surface
as much as possible to remove “resources” that can be
used as avenues for the attacker to use

• How do you know the web browser is used by the person you expect?
• Is it OK for data to go from one “box” to the next without being authenticated?
• Is it OK for data to go from one “box” to the next without being encrypted?
• What happens if someone made unauthorized modifications to data in the database?

STRIDE Threat Modeling

A “simplified threat-risk model” which is easy to remember
Spoofing Identity

• Is a key risk for applications with many users and a single execution context at the application and database tiers
• Users should not be able to become any other user or assume the attributes of another user

Tampering with Data
• Data should be stored in a secure location, with access appropriately controlled
• The application should carefully check data received from the user and validate that it is “sane” (i.e. relevant and valid) and applicable before

storing or using it
• Data entered in the client (e.g. browser) should be checked and validated on the server and not in the client where the validation checks might be

tampered with
• Application should not send and calculate data in the client where the user can manipulate the data, but in the server-side code

Repudiation
• Determine if the application requires nonrepudiation controls, such as web access logs, audit trails at each tier, or the same user context from top

to bottom
• Users may dispute transactions if there is insufficient auditing or record-keeping of their activity

Denial of Service
• Application designers should be aware that their applications are at risk of denial of service attacks
• Use of expensive resources (e.g. large files, heavy-duty searches, long queries) should be reserved for authenticated and authorized users and

should not be available to anonymous users.
• Every facet of the application should be engineered to perform as little work as possible, to use fast and few database queries, and to avaoid

exposing large files or unique links per user to per user to prevent simple denial-of-service attacks

Elevation of Privilege
• If an application provides distinct user and administrative roles, ensure that the user cannot elevate his or her role to a more highly privileged

one
• All actions should be controlled through an authorization matrix to ensure that only the permitted roles can access privileged functionality. It is

not sufficient, for example, to not display privileged-role links

MIS 5214 Security Architecture 52

OWASP (Open Worldwide Application Security Project) Frameworks

• Vulnerabilities • Principles • Top 10 Web Application
Security Risks

MIS 5214 Security Architecture 53

Vulnerability Scanning
• Scanning methods:

• Safe
• Destructive

• Service recognition – Determines what service is running on which ports
• Reports

• Indicates the threat level for vulnerabilities it detects
• Critical
• High
• Medium
• Low
• Informational

• Description of Vulnerability
• Risk Factor
• CVE Number

https://nmap.org/book/man.html

https://nmap.org/book/man-briefoptions.html

We obtained a “Jail shell”

Next steps

Application Security Testing (AST)

Estimated AST market reached $3.4 billion in 2022

Fundamental Capabilities
• Static AST (SAST)
• Software Composition Analysis (SCA)
• Dynamic AST (DAST)
• API Testing

SBOM = Software Bill Of Materials
ASRTM = Application Security Requirements and Threat modeling
CSSTP = Crowdsourced Software Security Testing Platforms (i.e. bug bounties)
WAAP = cloud Web Application and API Protection
EAM = Externalized Authorization Management

MITRE’s Common Application Vulnerabilities

https://cwe.mitre.org/data/definitions/288.html

MITRE’s Common Weakness Enumeration

Application Vulnerability Testing Reports

Automated application security testing tools provide
vulnerability reports

MIS 5214 Security Architecture 66

Application Security Testing
Static application security testing (SAST)

• Can be thought of as testing the application from the inside out
• By examining its source code, byte code or application binaries for

conditions indicative of a security vulnerability

Dynamic application security testing (DAST)
• Can be thought of as testing the application from the outside in
• By examining the application in its running state, and trying to poke

it and prod it in unexpected ways in order to discover security
vulnerabilities

Interactive application security testing (IAST)
• Can be thought of as testing the application from the outside in
• By examining the application in its running state, and trying to poke

it and prod it in unexpected ways in order to discover security
vulnerabilities

Software Composition Analysis (SCA)
• Software Composition (or Component) Analysis is the process of

identifying potential areas of risk from the use of third-party and
open-source software components

• SCA is a form of Cyber Supply Chain Risk Management

MIS 5214 Security Architecture 67

Automated application security testing tools
Some vendors provide SAST tools, others provide
DAST tools, others provide SCA tools

Some vendors provide combinations of these tools

MIS 5214 Security Architecture 68

MIS 5214 Security Architecture 69

SAST Compliance Report Examples

MIS 5214 Security Architecture 71

SAST Compliance Report Examples

MIS 5214 Security Architecture 72

SAST Report Details

MIS 5214 Security Architecture 73

https://cwe.mitre.org/data/definitions/79.html

Application Security Testing
Static application security testing (SAST)

• Can be thought of as testing the application
from the inside out

• By examining its source code, byte code or
application binaries for conditions indicative of a
security vulnerability

Dynamic application security testing (DAST)
• Can be thought of as testing the application

from the outside in

• By examining the application in its running state,
and trying to poke it and prod it in unexpected
ways in order to discover security vulnerabilities

MIS 5214 Security Architecture 74

DAST Report

MIS 5214 Security Architecture 75

Application Security Assessment and Recommendations

MIS 5214 Security Architecture 76

Dynamic Application Security Testing
Vulnerability Assessment Report

MIS 5214 Security Architecture 77

AppScan example

MIS 5214 Security Architecture 78

MIS 5214 Security Architecture 79

MIS 5214 Security Architecture 80

Application Security Testing
Static application security testing (SAST)

• Can be thought of as testing the application from the
inside out

• By examining its source code, byte code or application
binaries for conditions indicative of a security vulnerability

Dynamic application security testing (DAST)
• Can be thought of as testing the application from the

outside in
• By examining the application in its running state, and

trying to poke it and prod it in unexpected ways in order
to discover security vulnerabilities

Interactive application security testing (IAST)
• Can be thought of as testing the application from the

outside in
• By examining the application in its running state, and

trying to poke it and prod it in unexpected ways in order
to discover security vulnerabilities

MIS 5214 Security Architecture 81

Application Security Testing
Static application security testing (SAST)

• Can be thought of as testing the application from the inside out
• By examining its source code, byte code or application binaries for

conditions indicative of a security vulnerability

Dynamic application security testing (DAST)
• Can be thought of as testing the application from the outside in
• By examining the application in its running state, and trying to poke

it and prod it in unexpected ways in order to discover security
vulnerabilities

Interactive application security testing (IAST)
• Can be thought of as testing the application from the outside in
• By examining the application in its running state, and trying to poke

it and prod it in unexpected ways in order to discover security
vulnerabilities

Software Composition Analysis (SCA)
• Software Composition (or Component) Analysis is the process of

identifying potential areas of risk from the use of third-party and
open-source software components

• SCA is a form of Cyber Supply Chain Risk Management

MIS 5214 Security Architecture 82

https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

Agenda

✓In the News

✓Team Project Guidance

✓Distributed Systems
✓File Server Architecture
✓Client/Server Architecture
✓N-Tier Architecture
✓Cloud Architecture
✓Service Oriented Architecture (SOA)

✓Example Cloud-based N-Tier SOA Application Development System

✓Control Stages, Objectives, Application Security Testing

• Additional Best Practices

Additional best practices for secure application development

1. Defense-in-Depth

2. Positive Security Model

3. Fail Safely

4. Run with Least Privilege

5. Avoid Security by Obscurity

6. Keep Security Simple

7. Use Open Standards

8. Keep, manage and analyze logs to detect Intrusions

9. Never Trust External Infrastructure and Services

10. Establish Secure Defaults

Characteristics which can help in
quickly spotting common weaknesses
and poor controls

MIS 5214 Security Architecture 90

Defense In Depth

Layered approaches provide more security over the long term than one
complicated mass of security architecture

• Sequences of routers, firewalls and intrusion detection/protection monitoring
devices used to examine data packets, reduce undesired traffic and protect the
inner information systems

• Access Control Lists (ACLs), for example, on the networking routers and firewall
equipment to allow only necessary traffic to reach the application

• Quickly eliminating access to services, ports, and protocols significantly lowers
the overall risk of compromise to the system on which the application is
running

MIS 5214 Security Architecture 91

Positive Security Model

• Positive security models use “allowed list” to allow only what is on
the list, excluding everything else by default
• “Deny by default”

• A challenge for antivirus programs

• In contrast with negative (deny list) security models that allow
everything by default, eliminating only the items known to be bad
• Problems:

• Blacklist must be kept up to date

• Even if blacklist is updated, an unknown vulnerability can still exist

• Attack surface is much larger than with a positive security model

MIS 5214 Security Architecture 92

Fail Safely

• An application failure can be dealt with in one of 3 ways:
• Allow

• Block

• Error

• In general, application errors should all fail in the same way:
• Disallow the operation (as viewed by the user) and provide no or minimal

information on the failure

• Do not provide the end user with additional information that may help in
compromising the system
• Put the error information in the logs, but do not provide to the user to use in

compromising the system

MIS 5214 Security Architecture 93

Run with Least Privilege

• Principle of Least Privilege mandates that accounts have the least
amount of privilege possible to perform their activity

• This includes:
• User rights

• Resource permissions such as CPU limits, memory capacity, network
bandwidth, file system permissions, and database permissions

MIS 5214 Security Architecture 94

Avoid Security by Obscurity

• Obfuscating data (hiding it) instead of encrypting it is a very weak
security mechanism
• If a human can figure out how to hide the data a human can learn how to

recover the data

• Never obfuscate critical data that can be encrypted or never stored in
the first place

MIS 5214 Security Architecture 95

Keep Security Simple

• Simple security mechanisms are easy to verify and easy to implement
correctly

• Avoid complex security mechanisms if possible
• “The quickest method to break a cryptographic algorithm is to go around it”

• Do not confuse complexity with layers: Layers are good; complexity isn’t

MIS 5214 Security Architecture 96

Use Open Standards

• Open security standards provide increased portability and
interoperability

• IT infrastructure is often a heterogeneous mix of platforms, open
standards helps ensure compatibility between systems as the
application grows

• Open standards are often well known and scrutinized by peers in the
security industry to ensure they remain secure

MIS 5214 Security Architecture 97

Keep, manage and analyze logs to help detect intrusions

• Applications should have built-in logging that is protected and easily
read

• Logs help you troubleshoot issues, and just as important – help you to
track down when or how an application might have been
compromised

MIS 5214 Security Architecture 98

Never Trust External Infrastructure and Services

• Many organizations use the processing capabilities of third-party
partners that more than likely have differing security policies and
postures than your organization

• It is unlikely that you can influence or control an external third party

• Implicitly trusting externally run systems is dangerous!

MIS 5214 Security Architecture 99

Establish Secure Defaults

• New applications should arrive or be presented to users with the
most secure default settings possible that still allow business to
function

• This may require training end users or communications messages

• End result is a significantly reduced attack surface
• Especially when application is pushed out across a large population

MIS 5214 Security Architecture 100

Test Areas for Auditing Applications

1. Input Controls, Process Controls, and Output Controls
• Review and evaluate controls built into system transactions for i data
• Determine the need for error/exception reports related to data integrity and evaluate

whether this need has been filled

2. Interface Controls
• Review and evaluate the controls in place over data feeds to and from interfacing

systems
• If the same data is kept in multiple databases and/or systems, ensure that periodic

sync processes are executed to detect any inconsistencies in the data

3. Audit Trails
• Review and evaluate the audit trails present in the system and the controls over those

audit trails
• Ensure that the system provides a means of tracing a transaction or piece of data

from the beginning to the end of the process enabled by the system

MIS 5214 Security Architecture 101

Test Areas for Auditing Applications

4. Software Change Controls
• Ensure that the application software cannot be changed without going through a

standard checkout/staging/testing/approval process after it is placed into
production

• Evaluate controls regarding code checkout and versioning

• Evaluate controls regarding the testing of application code before it is placed into a
production environment

• Evaluate controls regarding batch scheduling

5. Backup and Recovery
• Determine whether a Business Impact Analysis (BIA) has been performed on the

application to establish backup and recovery needs

• Ensure that appropriate backup and recovery controls are in place

• Ensure appropriate recovery controls are in place
MIS 5214 Security Architecture 102

Test Areas for Auditing Applications

6. Data Retention and User Involvement
• Evaluate controls regarding the application’s data retention

• Evaluate overall user involvement and support for the Application

7. Identity, Authentication, and Access Controls…

8. Host Hardening…

MIS 5214 Security Architecture 103

Agenda

✓Team Project Guidance

✓Distributed Systems
✓File Server Architecture
✓Client/Server Architecture
✓N-Tier Architecture
✓Cloud Architecture
✓Service Oriented Architecture (SOA)

✓Example Cloud-based N-Tier SOA Application Development System

✓Control Stages, Objectives, Application Security Testing

✓Additional Best Practices

	Slide 1: Unit #10
	Slide 2: Agenda
	Slide 3: In The News
	Slide 4: Team Project Guidance
	Slide 5
	Slide 6
	Slide 7: Team Project Guidance
	Slide 8: Team Project Guidance
	Slide 9: Team Project Guidance
	Slide 10: Team Project Guidance
	Slide 11: Network/Boundary Diagram
	Slide 12: Data Flow Diagrams
	Slide 13: Data Flow Diagrams
	Slide 14: Data Flow Diagrams
	Slide 15: Data Flow Diagrams
	Slide 16: Team Project Guidance
	Slide 17: Team Project Guidance
	Slide 18: Team Project Guidance
	Slide 19: Team Project Guidance
	Slide 20: Team Project Guidance
	Slide 21: Agenda
	Slide 22: File Server architecture
	Slide 23: Limitations of File Server Architecture
	Slide 24: Client-Server Architecture
	Slide 25: N-Tier Architecture
	Slide 26: N-Tier Applications
	Slide 27: N-Tier Applications
	Slide 28: Service Oriented Architecture (SOA)
	Slide 29: N-Tier Applications using SOA in the cloud
	Slide 30
	Slide 31: Presentation Layer
	Slide 32: Application Layer in a “fat client”
	Slide 33: Service Layer
	Slide 34: Domain / Repository Layer
	Slide 35: Mapping Layer
	Slide 36: Database Layer
	Slide 37: Development Infrastructure Example…
	Slide 38: Source Control
	Slide 39: Issue Tracking System
	Slide 40: Continuous Integration & Continuous Deployment
	Slide 41: Development Infrastructure Example…
	Slide 42: Application 3+ Tier Architecture example
	Slide 43: Agenda
	Slide 44: Shifting Security Left – that is: earlier in the software development life cycle
	Slide 45: Information System Development Control Stages
	Slide 46: Control Objectives for Business Information Systems
	Slide 47: Control Objectives for Business Information Systems
	Slide 48: Control Objectives for Business Information Systems
	Slide 49: Control Objectives for Business Information Systems
	Slide 50: Control Objectives for Business Information Systems
	Slide 51: Software security, includes threat and attack surface analysis…
	Slide 52: STRIDE Threat Modeling
	Slide 53: OWASP (Open Worldwide Application Security Project) Frameworks
	Slide 54: Vulnerability Scanning
	Slide 55: https://nmap.org/book/man.html
	Slide 56
	Slide 57
	Slide 58: We obtained a “Jail shell”
	Slide 59
	Slide 60: Next steps
	Slide 61
	Slide 62: Application Security Testing (AST)
	Slide 63: MITRE’s Common Application Vulnerabilities
	Slide 64: MITRE’s Common Weakness Enumeration
	Slide 65: Application Vulnerability Testing Reports
	Slide 66: Automated application security testing tools provide vulnerability reports
	Slide 67: Application Security Testing
	Slide 68: Automated application security testing tools
	Slide 69
	Slide 70
	Slide 71: SAST Compliance Report Examples
	Slide 72: SAST Compliance Report Examples
	Slide 73: SAST Report Details
	Slide 74: Application Security Testing
	Slide 75: DAST Report
	Slide 76: Application Security Assessment and Recommendations
	Slide 77
	Slide 78: AppScan example
	Slide 79
	Slide 80
	Slide 81: Application Security Testing
	Slide 82: Application Security Testing
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: Agenda
	Slide 90: Additional best practices for secure application development
	Slide 91: Defense In Depth
	Slide 92: Positive Security Model
	Slide 93: Fail Safely
	Slide 94: Run with Least Privilege
	Slide 95: Avoid Security by Obscurity
	Slide 96: Keep Security Simple
	Slide 97: Use Open Standards
	Slide 98: Keep, manage and analyze logs to help detect intrusions
	Slide 99: Never Trust External Infrastructure and Services
	Slide 100: Establish Secure Defaults
	Slide 101: Test Areas for Auditing Applications
	Slide 102: Test Areas for Auditing Applications
	Slide 103: Test Areas for Auditing Applications
	Slide 104: Agenda

