Unit #2b

MIS5214

Cryptography

Agenda

- Cryptography terminology
- Symmetric Key Cryptography
 - Symmetric stream cryptography
 - Symmetric block cryptography
- Key sharing problem
- Public Key Cryptography
 - Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - RSA algorithm
- Hybrid-Cryptography
 - Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- If we have time: Brief review of Hashing & Digital Signatures

Services of cryptosystems

- Confidentiality Renders information unintelligible except by authorized entities
- **Authentication** Verifies the identity of the user or system that created, requested or provided the information
- Nonrepudiation Ensure the sender cannot deny sending the information
- **Integrity** Data has not been altered in an unauthorized manner since it was created, transmitted, or stored

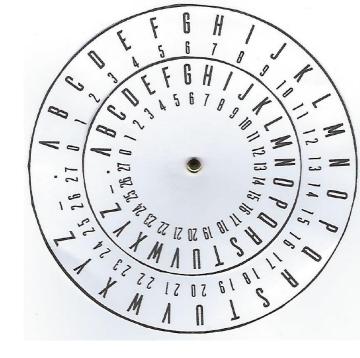
Cipher = encryption algorithm

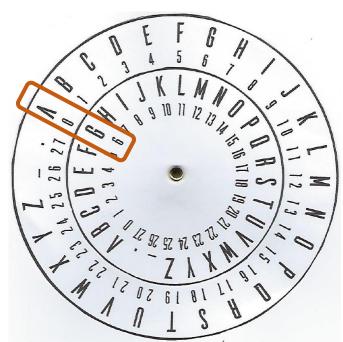
2 main attributes combined in a cypher

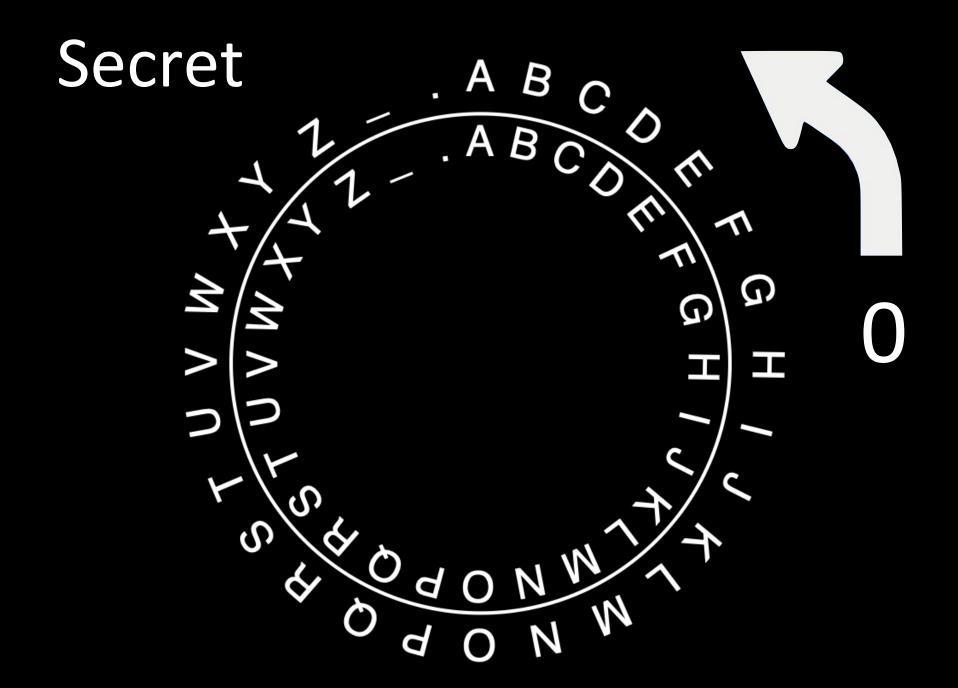
- 1. Confusion: usually carried out through <u>substitution</u>
- 2. Diffusion: Usually carried out through transposition

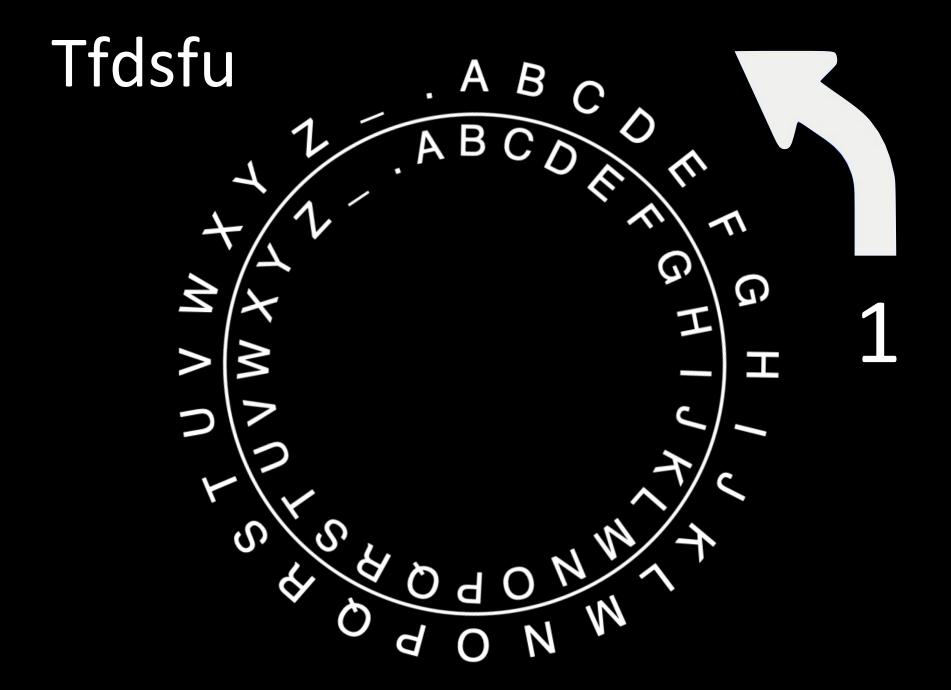
Example: Substitution cipher or algorithm

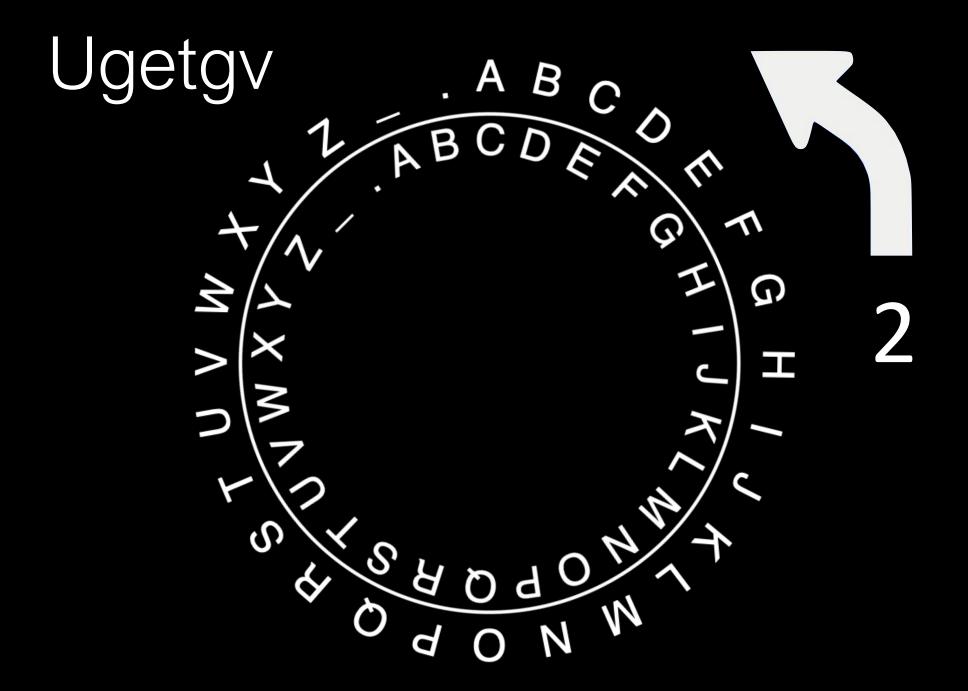
A mono-alphabetic substitution cipher

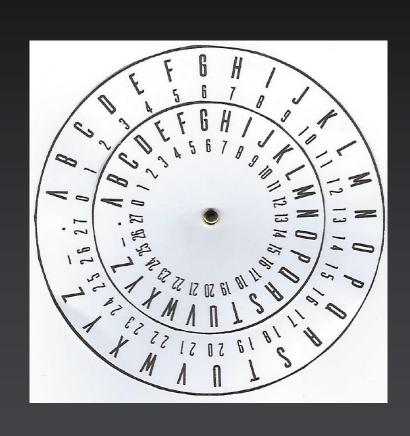

ABCDEFGHIJKLMNOPQRSTUVWXYZ ZYXWVUTSRQPONMLKJIHGFEDCBA

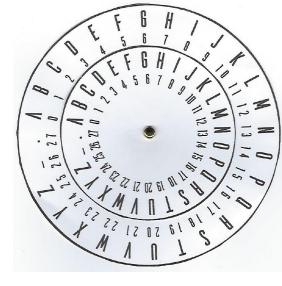

"SECURITY" <=> "HVXFIRGB"

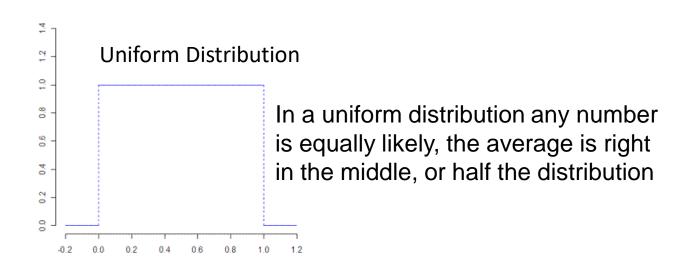

Cipher Disk based substitution


Outer wheel is for the *plaintext* alphabet Inner wheel is for *ciphertext*


When the outer wheel and inner wheel and are both aligned at the letter "A" (i.e. position zero), there is no encryption mapping the letters on the outer wheel to letters on the inner wheel




Keyspace is the number of possible keys



Question: Assuming each key is equally likely (randomly distributed) how many random guesses would be needed, on average, to find the key to decrypt the plaintext?

- \triangleright Answer: ~14, (28 -1) = 27 and 27/2 = 13.5 which is approximately 14
 - ➤ Because the average of a uniform distribution is half
 - ➤ Recall 26 letters in the alphabet + "." and "-" = 28, but we cannot use "0" as the key which gives us the original plaintext back the size of the alphabet

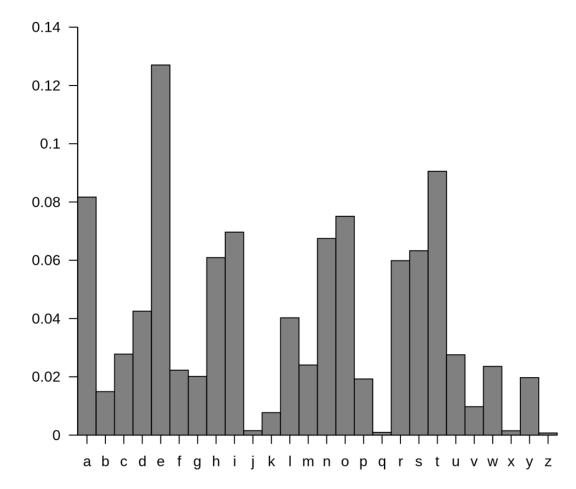
- This is important in cryptography because the average number of attempts needed to successfully guess the key through brute forcing is half of the key space
- This is true of the simple cipher wheel as well as modern encryption schemes with very large key spaces

What technique could you use to do it faster than 27 or 14 attempts?

If it was not just a lucky guess, then you were likely using "cryptanalysis", the science of breaking codes

What strategies could you use?

Linguistic cryptanalysis uses knowledge of the English language, for example:


- Recognizing the beginning of the word
- Looking for letter pairs
- Looking at vowels

Linguistic cryptanalysis examples...

One form of linguistic cryptanalysis is *frequency analysis of letters used in English* Frequency analysis recognizes that different letters have different probabilities of frequencies of use in words:

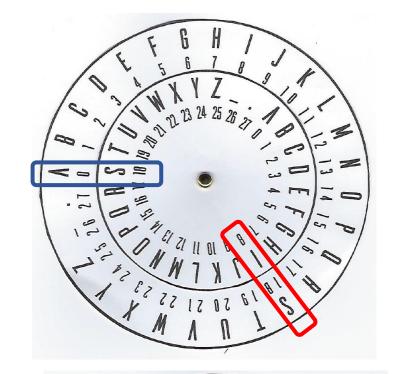
Given a sentences written in the English language

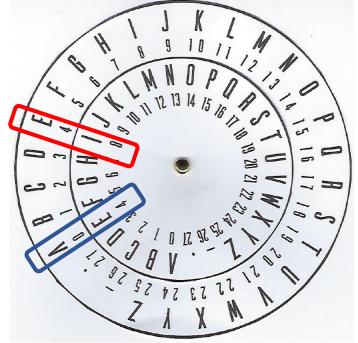
- E, T, A and O are the most common
- Z, Q and X are rare
- TH, ER, ON, and AN are the most common pairs of letters (termed bigrams or digraphs)
- SS, EE, TT, and FF are the most common repeats

Polyalphabetic Cipher

Ciphers can be made stronger, and frequency analysis made more difficult when more than one cipher alphabet is used

- For example, encrypt the plaintext message "SEND MONEY"
 - Using the word "SECURITY" as the key, but repeat its use in the key to make it have as many letters as the plaintext:


Plaintext: SEND MONEY (10 characters including the space "_")


Key: SECURITYSE (10 characters)

Polyalphabetic Cipher

Plaintext: SEND MONEY (10 characters including the space "_")
Key: SECURITYSE (10 characters)

- Encrypt by rotating the inner wheel so that "S" in the word
 "SECURITY" aligns with "A" on the outer wheel
 Now "S" in the word "SEND" on the outer wheel maps
 to the letter "I" on the inner wheel, so "I" is the
 ciphertext
- 2. Next, rotate the inner wheel so that "E" in the word "SECURITY" aligns with "A" on the outer wheel. Now "E" in the word "SEND" on the outer wheel maps to "I" on the inner wheel, so "I" is the ciphertext again, even though the plaintext is different than before

Random Polyalphabetic Cipher

What if we use a random polyalphabetic key that is as long as the message?

For example, let's say our <u>plaintext</u> is:

We intend to begin on the first of February unrestricted submarine warfare.

And the polyalphabetic key is a string of random characters as long as the message: ackwulsjwkblogbzcukn.kqubpnnefjvcebuymaclzvzmzwfbxpmmzqwmm.tejzfutjcqrsf_hq

How could an attacker attempt to crack this message? Is an attack possible?

Cipher = encryption algorithm

- 2 main attributes combined in a cypher
 - 1. Confusion: usually carried out through substitution
 - 2. **Diffusion:** Usually carried out through <u>transposition</u>

Translating what we type, into ASCII, and then into binary... which is what is sent as data packets across the network to other computers...

Binary - Decimal

ASCII - Decimal

Dec	Hex	Name	Char	Ctrl-char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	0	Null	NUL	CTRL-®	32	20	Space	64	40	0	96	60	
1	1	Start of heading	SOH	CTRL-A	33	21	1	65	41	A	97	61	a
2	2	Start of text	STX	CTRL-B	34	22	**	66	42	8	98	62	b
3	3	End of text	ETX	CTRL-C	35	23	#	67	43	C	99	63	C
4	4	End of xmit	EOT	CTRL-D	36	24	\$	68	44	D	100	64	d
5	5	Enquiry	ENO	CTRL-E	37	25	96	69	45	E	101	65	0

8 bits supports 256 numbers

2726	2 ⁵	24	2 ³	2 ²	21	2 ^C
128 64	32	16	8	4	2	1

ASCII Character Table

Name	Нех	Dec
. (period)	2E	046
0	30	048
1	31	049
2	32	050
3	33	051
4	34	052
5	35	053
6	36	054
7	37	055
8	38	056
9	39	057

Name	Нех	Dec
А	41	065
В	42	066
U	43	067
D	44	068
Е	45	069
F	46	070
O	47	071
I	48	072
1	49	073
J	4A	074
К	4B	075

1	Name	Hex	Dec
1	напне	пех	Dec
	L	4C	076
	М	4D	077
	N	4E	078
	0	4F	079
	Р	50	080
	Ø	51	081
	R	52	802
	S	53	083
	T	54	084
	U	55	085
	>	56	086

Name	Нех	Dec
W	57	087
Х	58	088
Υ	59	089
Z	5A	090

XOR – Exclusive OR

Creating "confusion" (i.e. substitution) through a binary mathematical function called "exclusive OR", abbreviated as XOR

Message stream: 1001010111

Keystream: 0011101010

Ciphertext stream: 1010111101

Agenda

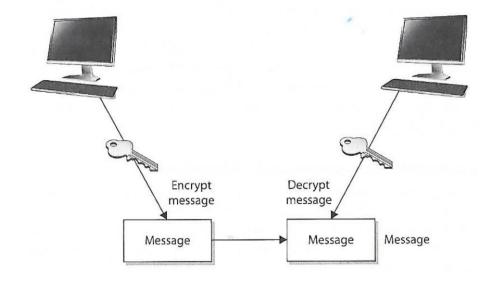
- √ Cryptography terminology
- Symmetric Key Cryptography
 - Symmetric stream cryptography
 - Symmetric block cryptography
- Key sharing problem
- Public Key Cryptography
 - Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - RSA algorithm
- Hybrid-Cryptography
 - Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- If we have time: Brief review of Hashing & Digital Signatures

Symmetric cryptography

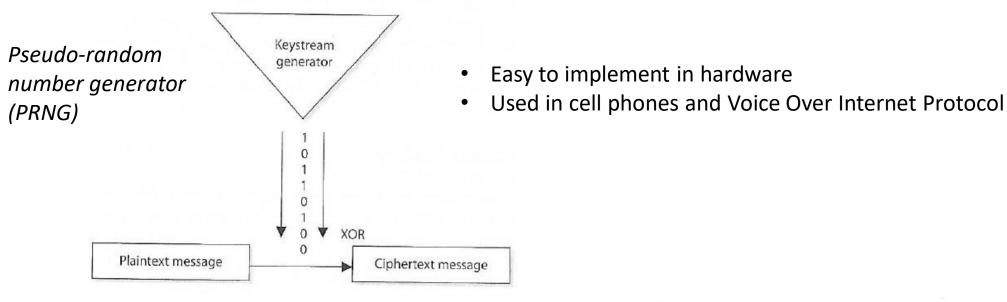
Strengths:

- Much faster (less computationally intensive) than asymmetric systems.
- Hard to break if using a large key size.

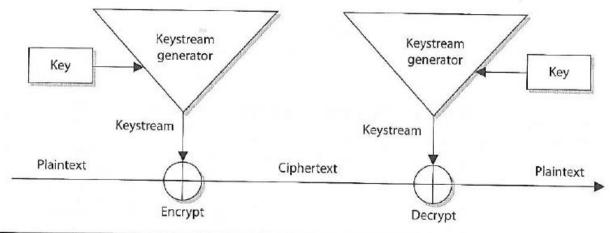
Symmetric cryptography is 1,000 times faster than Asymmetric cryptography


Weaknesses:

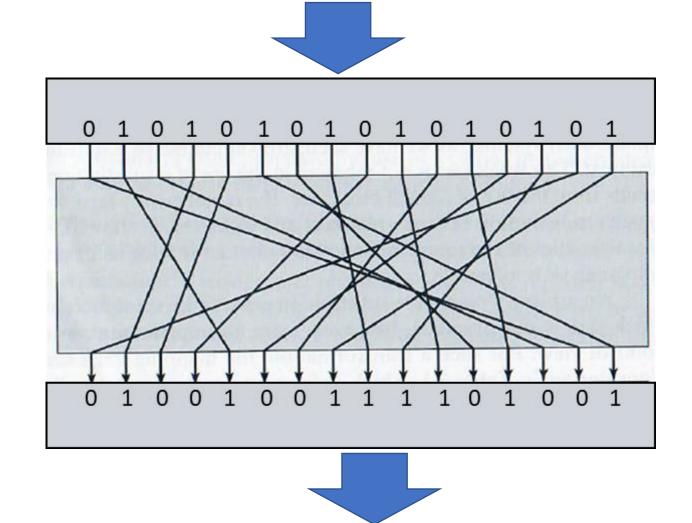
- Requires a secure mechanism to deliver keys properly.
- Each pair of users needs a unique key, so as the number of individuals increases, so does the number of keys, possibly making key management overwhelming.
- Provides confidentiality but not authenticity or nonrepudiation.


Two types: Stream and Block Ciphers

- **Stream Ciphers** treat the message a stream of bits and performs mathematical functions on each bit individually
- **Block Ciphers** divide a message into blocks of bits and transforms the blocks one at a time


Symmetric encryption uses the same keys.

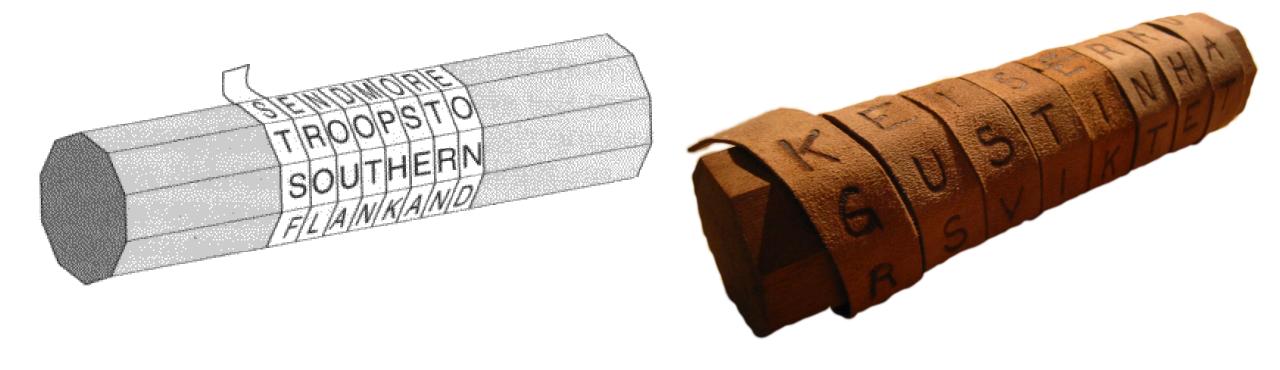
Symmetric Stream Ciphers


Wi-Fi access points (like the one on the classroom ceiling) and cell phone use stream ciphers to encrypt/decrypt data they send and receive

The sender and receiver must have the same key to generate the same keystream.

2 main attributes combined in a cypher

- Confusion: usually carried out through substitution
- **2. Diffusion:** Usually carried out through <u>transposition</u>


0100100111101001

0101010101010101

Harris, S. and Maymi, F. (2016) <u>All-In-One CISSP Exam Guide</u>, McGraw Hill Education

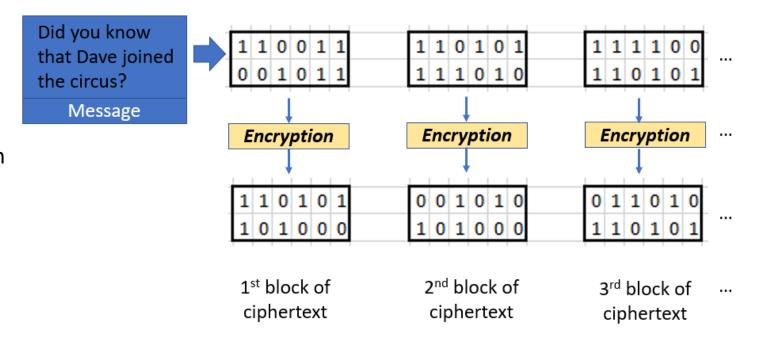
Transposition

• Ancient example: <u>scytale</u>

A profit was achieved by our ACT unit

a profitwas
a chievedby
ouractunit

0123456789
a profitwas
a chievedby
ouractunit

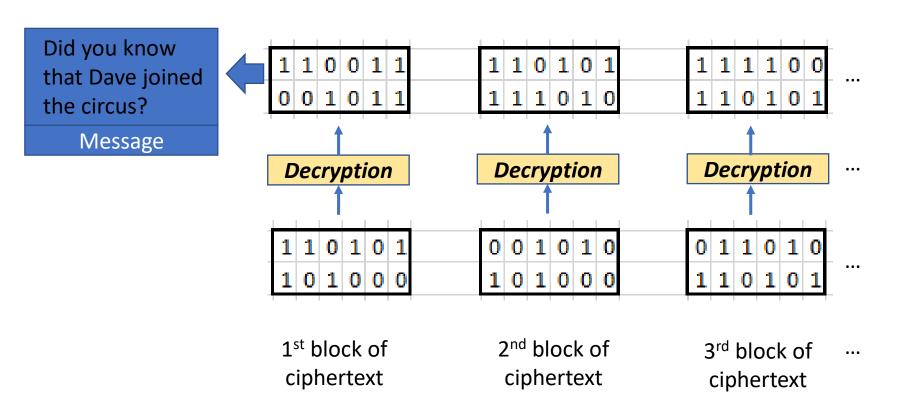

6 0 2 5 4 8 7 1 3 9 t a r i f a wpos e a h v e b d c i y u o r t c i n u a t 0123456789
a profitwas
a chievedby
ouractunit

Block Cyphers ("Cipher")

- Message is divided into blocks of bits
- Blocks are put through encryption functions 1 block at a time

Suppose you are encrypting a 640-bit long message to send using a block cypher that uses 64 bits

- Your message would be chopped up into 10 blocks each 64 bits long
- Each block, in turn, would be run through a series of encryption functions (substitution and transposition)
- Ending up with 10 blocks of ciphertext


MIS 4596 31

Block Ciphers

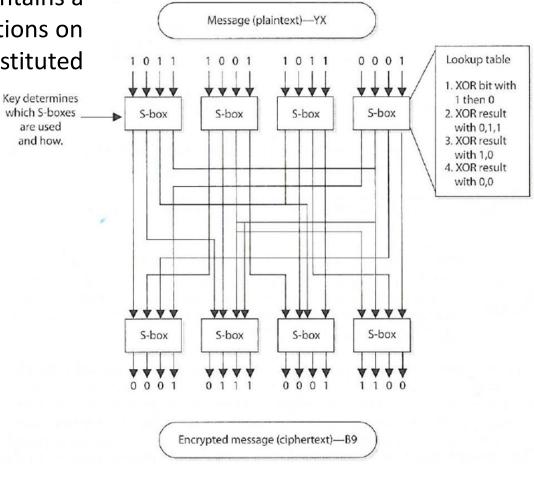
- Message is divided into blocks of bits
- Blocks are put through mathematical functions 1 block at a time

You send the message. Receiver uses the same block cipher and key (symmetric) to decipher the message

- The 10 ciphertext blocks go back through the algorithm in the reverse sequence
- Resulting in original plaintext message

MIS 4596 32

Block Ciphers versus Stream Ciphers


In contrast, block ciphers encrypt a block of bits at a time

In this example, each Substitution Box (S-box) contains a lookup table used by the algorithm as instructions on how the bits are substituted

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	-0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

Decryption table

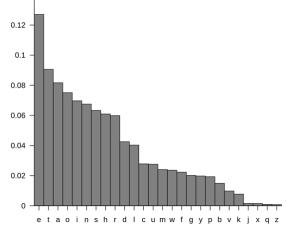
...followed by transposition...

Block cipher's "mode of operation"

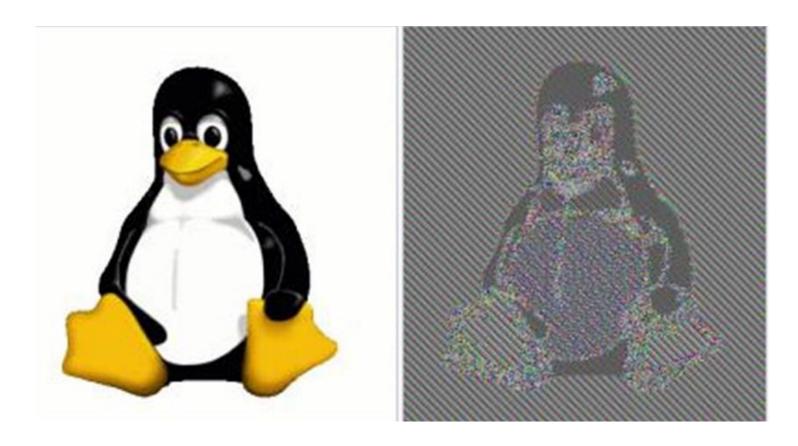
5 modes of operation are used to tailor them for use in different applications:

- 1. ECB Electronic Code Book mode
- 2. CBC Cipher Block Chaining mode
- 3. CFB Cipher FeedBack mode
- 4. OFB Output FeedBack mode
- 5. CTR CounTeR mode

MIS 4596 34


ECB – Electronic Code Book mode

 A data block of a certain size (e.g. 64 bits or 128 bits or...) is entered into the algorithm with the key, and a block of cipher text is produced


$$C_i = Encrypt(Key, P_i)$$

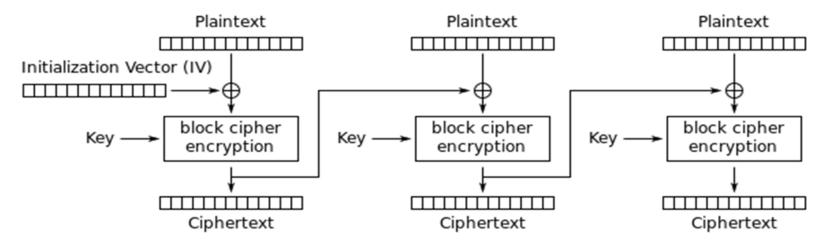
for $i = 1, ..., k$

Where:

- Ci is block i of ciphertext
- P, is a block of plaintext

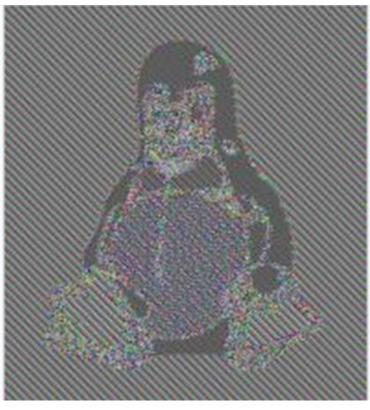
- Encrypts every block the same way every time for a given key
- Why is this a problem?
 - This is a problem because **frequency analysis** of the encrypted text can reveal a lot of information
 - ➤ Not enough randomness MIS 4596

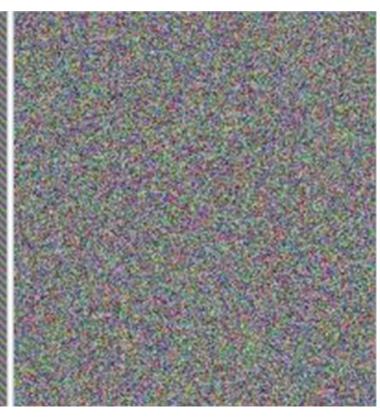
Original Image


Block cipher with ECB (Electronic Code Book) encryption

Not good!

MIS 4596 36


CBC – Cipher Block Chaining mode

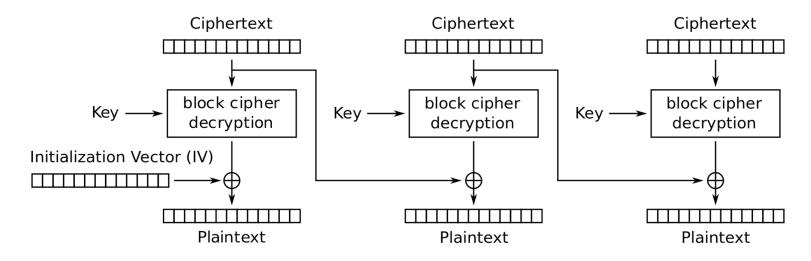

- Is much more secure
- Does not reveal a pattern of encryption for frequency analysis
- Each block of text, the key, and the value based on the previous block are processed in the algorithm and applied to the next block of text

- XORs a plaintext with the **last** encrypted block before encrypting it. This ensures that the same plaintext is encrypted differently every time.
- Requires an initialization vector (or IV) to get started, since the first block doesn't have a previous encrypted block to XOR against.

Original Image

Block cipher with ECB (Electronic Code Book) encryption

Not good!


Block cipher with CBC (Cipher Block Chaining) or any of the other modes of encryption

These are good!

38

MIS 4596

CBC – Cipher Block Chaining mode

Cipher Block Chaining (CBC) mode decryption

Cryptanalysis Attacks

- Brute force
 - Trying all key values in the keyspace
- Frequency Analysis
 - Guess values based on frequency of occurrence
- Dictionary Attack
 - Find plaintext based on common words
- Known Plaintext
 - Format or content of plaintext available
- Chosen Plaintext
 - Attack can encrypt chosen plaintext
- Chosen Ciphertext
 - Decrypt known ciphertext to discover key

- Random Number Generator (RNG) Attack
 - Predict initialization vector used by an algorithm
- Social Engineering
 - Humans are the weakest link

40 MIS 4596

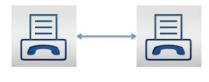
Modern Block Ciphers

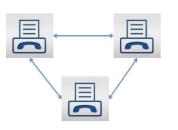
Use block sizes of 128-bits or greater

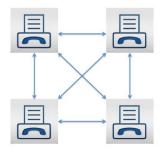
- Examples of Block Ciphers that can be used are:
 - AES
 - Blowfish
 - Twofish
 - Serpent

Do not use these examples of block ciphers which use 64-bit blocks, which are too small to be secure include:

- DES
- 3DES

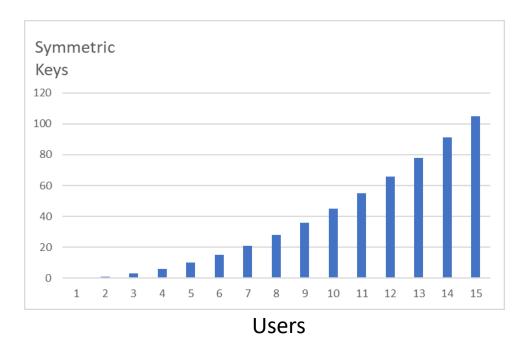

DES Cracker:


- A DES key search machine
- Contains 1,536 chips
- Cost: \$250,000
- Searches 88 billion keys per second
- Won RSA Laboratory's "DES Challenge II-2" by successfully finding a DES key in 56 hours

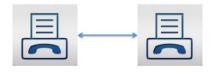

Agenda

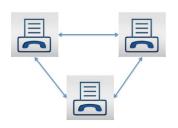
- √ Cryptography terminology
- ✓ Symmetric Key Cryptography
 - ✓ Symmetric stream cryptography
 - ✓ Symmetric block cryptography
- Key sharing problem
- Public Key Cryptography
 - Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - RSA algorithm
- Hybrid-Cryptography
 - Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- If we have time: Brief review of Hashing & Digital Signatures

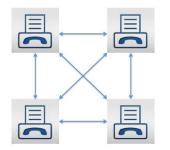
Key sharing problem



Sharing cryptographic keys has been a problem throughout history


 The number of pairs of keys ("secure network connections") grows at a near exponential rate (i.e. geometric rate) as the number of users


increases


Users	Symmetric
	Keys
1	0
2	1
3	3
4	6
5	10
6	15
7	21
8	28
9	36
10	45
11	55
12	66
13	78
14	91
15	105

Key sharing problem 🚨 🦳 🖶

- The number of pairs of keys needed for "n" users is determined by an equation known as Metcalf's Law
- Number of key pairs needed for n users = (n*(n-1))/2
 - The reason for the n-1 is that you do not need to communicate with yourself
- For 22 students how many keys would we need:

$$(22 *21)/2 = 231 \text{ keys}$$

45 MIS 4596

Diffie-Hellman Algorithm: Secret symmetric key derivation through public key sharing

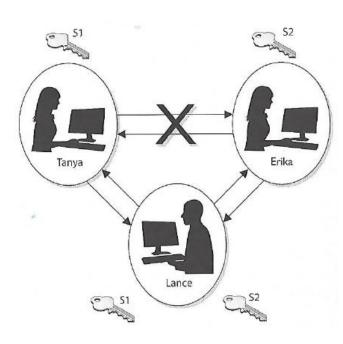
Assumptions:

A prime number is a positive whole number whose only factors (i.e. integer divisors) are 1 and the number itself (e.g. 2, 3, 5, 7, 11, 13, 17, 19, 23, ...). Bob & Alice want to compute a shared secret key to protect confidentiality of their conversation. Eve eavesdrops...

Algorithm:

- 1. Bob & Alice publicly agree on " \mathbf{p} " called *prime modulus* (e.g. $\mathbf{p} = 23$) & " \mathbf{g} " called *generator* (e.g. $\mathbf{g} = 5$), Eve overhears
- 2. Bob & Alice each choose their own secret key:
 - Bob's secret key is referred to as "x_bob" which is a number between 1 and p-1 (e.g. x_bob = 12)
 - Alice's secret key is referred to as "x_alice" which also is a number between 1 and p-1 (e.g. x_alice = 7)
- 3. Bob & Alice each computes their own public key, which they share with each other and Eve intercepts...
 - Bob computes: $y_bob = g^{x_bob} \mod p$ which is: $y_bob = 5^{12} \mod 23 = 18$ which he shares with Alice (and Eve)
 - Alice computes: $y_alice = g^{x_alice} \mod p$ which is: $y_alice = 5^7 \mod 23 = 17$ which she shares with Bob (and Eve)
- 4. Bob & Alice each compute their shared secret symmetric key
 - Bob computes: y alice^{x_bob} mod p which is: 17¹² mod 23 = 6
 - Alice computes: y_bob^{x_alice} mod p which is: 18⁷ mod 23 = 6
- 5. Bob & Alice now have a **shared secret ("symmetric") key = 6**
- 6. Eve has Bob & Alice's public keys: y_bob=18 & y_alice=17, prime modulus: p=23 and generator: g=5, but not their secret keys x_bob = 12 & x_alice = 7
- Eve cannot calculate Bob& Alice's shared symmetric secret key from their public keys, p and g alone even though she knows they are using the Diffie-Hellman algorithm!

In practice, p must be much larger prime number... this is a 4096-bit p


857,756,147,438,808,767,721,482,523,862,479,196,091,217,066,271,200,126,894,701,702,329,327,8 72,802,487,425,224,246,373,206,756,773,954,180,315,945,664,685,564,049,690,107,228,861,210,05 3,005,306,168,041,237,244,792,245,832,497,260,206,801,417,396,745,674,574,281,768,112,711,519, 809,332,223,737,878,554,093,201,446,763,995,425,025,965,323,912,149,043,161,823,975,594,943,9 15,411,109,637,902,372,642,611,214,196,649,667,036,726,005,577,041,694,781,738,635,943,018,156 ,362,403,714,091,905,448,620,990,965,500,814,912,289,738,636,687,051,381,358,564,729,963,735,7 82,176,280,511,819,070,673,927,579,180,484,836,950,910,945,840,410,470,935,832,100,360,510,117 ,962,261,152,920,101,946,255,789,679,435,711,472,267,368,823,730,863,971,596,718,223,674,224,1 06,003,985,209,174,353,308,077,140,794,884,546,003,360,030,727,697,326,025,663,819,442,780,10 5,880,604,943,197,516,223,343,068,846,392,924,237,875,653,640,416,933,764,628,191,065,601,980, 281,442,005,263,033,849,543,723,716,743,986,123,624,356,871,152,793,177,027,462,801,070,011,5 26,783,269,474,338,816,734,553,122,757,257,382,121,230,562,181,721,318,331,271,107,036,972,78 8,062,816,322,387,506,944,045,038,739,178,684,349,474,317,534,892,731,313,651,324,179,101,369, 222,316,429,969,662,605,450,068,078,088,031,941,042,867,503,697,721,512,539,949,128,099,005,1 60,179,345,242,776,041,458,121,259,813,719,561,319,392,760,414,249,584,984,440,063,314,771,03 9,261,920,249,005,444,014,069,555,961,131,639,966,539,872,980,057,279,636,609,441,274,119,014, 567,294,590,620,498,019,375,631,405,622,479,332,810,401,520,856,695,524,524,855,468,645,479,0 42,909,834,183,316,487,318,824,544,358,235,183,243,643

Diffie-Hellman

- Uses asymmetric public and private keys to exchange a symmetric key
- Does not use asymmetric keys for confidentiality (i.e. to encrypt or decrypt any messages)
- Users/systems need to negotiate a new key for every new person
- No authentication, no non-repudiation

Diffie-Hellman was vulnerable to man-in-the-middle attack, because no authentication occurs before public keys are exchanged

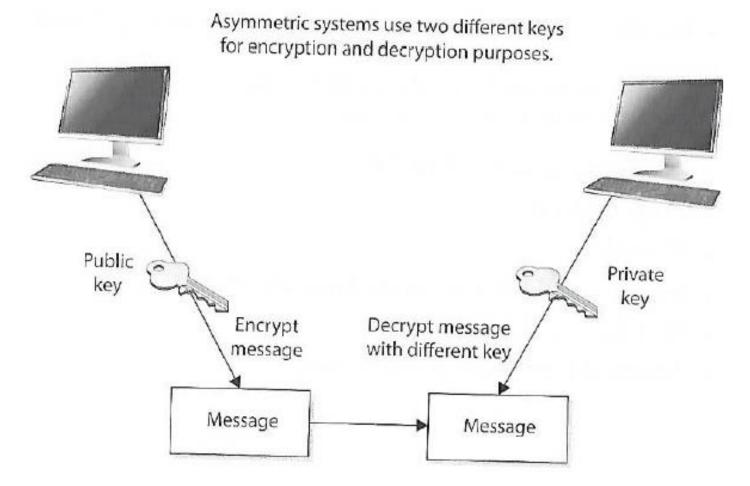
- 1. Tanya sends her public key to Erika, but Lance grabs the key during transmission so it never makes it to Erika
- 2. Lance spoofs Tanya's identity and sends over his public key to Erika. Erika now thinks she has Tanya's public key
- 3. Erika sends her public key to Tanya, but Lance grabs the key during transmission so it never makes it to Tanya
- 4. Lance spoofs Erika's identity and sends over his public key to Tanya. Tanya now thinks she has Erika's public key
- 5. Tanya combines her private key and Lance's public key and creates a symmetric key S1
- 6. Lance combines his private key and Tanya's public key and creates symmetric key S1
- 7. Erika combines her private key and Lance's public key and creates symmetric key S2
- 8. Lance combines his private key and Erika's public key and creates symmetric key S2
- 9. Now Tanya and Lance share a symmetric key (S1) and Eriak and Lance share a different symmetric key (S2). Tanya and Erika think they are sharing a key between themselves and od not realize Lance is involved
- 10. Tanya writes a message to Erika, and uses her symmetric key (S1) to encrypt the message, and sends it
- 11. Lance grabs the message and decrypts it with symmetric key S1, reads or modifies the message and re-encrypts it with symmetric key S2, and then sends it to Erika
- 12. Erika take symmetric key S2 and uses it to decrypt and read the message....

Agenda

- √ Cryptography terminology
- √ Symmetric key cryptography
 - ✓ Symmetric stream cryptography
 - ✓ Symmetric block cryptography
- √ Key sharing problem
- Public Key Cryptography
 - Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - RSA algorithm
- Hybrid-cryptography
 - Perfect Forward Secrecy
- Hashing revisited

Symmetric versus asymmetric algorithms

Symmetric cryptography


- Use a copied pair of symmetric (identical) secret keys
- The sender and the receive use the same key for encryption and decryption functions
- Confidentiality, but no integrity, authentication nor non-repudiation

Asymmetric cryptography

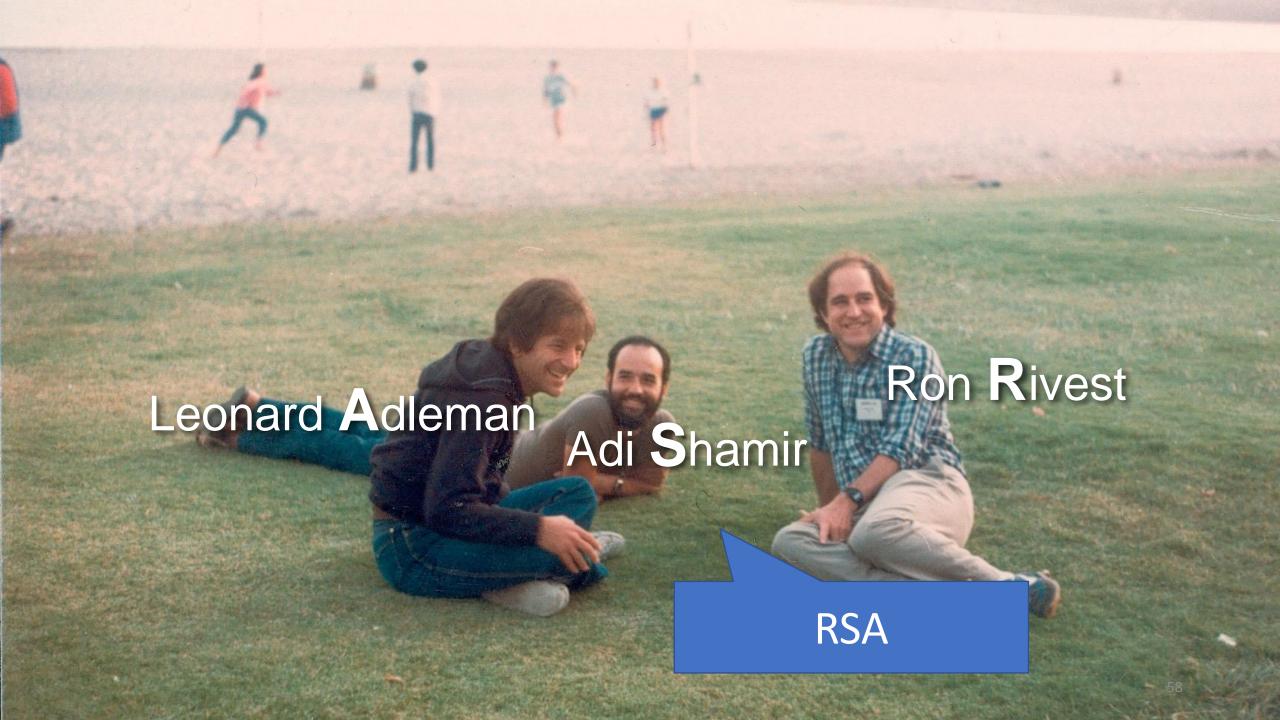
- Also know as "public key cryptography"
- Use different ("asymmetric") keys for encryption and decryption
- One is called the "private key" and the other is the "public key"
- Confidentiality, <u>but also want authenticity and non-repudiation</u>

Asymmetric cryptography

- Public and Private keys are mathematically related
 - Public keys are generated from private key
 - Private keys cannot be derived from the associated public key (if it falls into the wrong hands)
- Public key can be known by everyone
- Private key must be known and used only by the owner

Asymmetric cryptography is computationally intensive and much slower (1,000 times slower) than symmetric cryptography

Quick review


- 1. If a symmetric key is encrypted with a receiver's public key, what security service is provided?
 - **Confidentiality**: only the receiver's private key can be used to decrypt the symmetric key, and only the receiver should have access to this private key

Quick review

- 2. If data is encrypted with the sender's private key, what security services are provided?
 - **Authenticity** of the sender and nonrepudiation. If the receiver can decrypt the encrypted data with the sender's public key, then receiver knows the data was encrypted with the sender's private key

Quick review

- 3. Why do we encrypt the message with the symmetric key rather than the asymmetric key?
 - Because the asymmetric key algorithm is too slow

RSA Public Key Algorithm

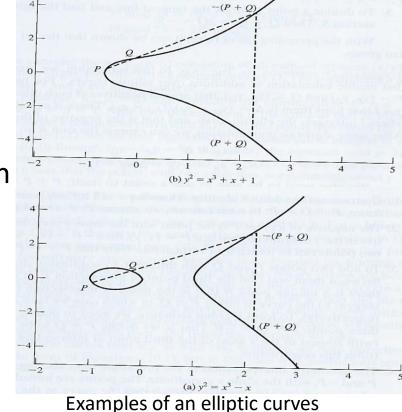
- Most popular worldwide standard, that can be used for:
 - Asymmetric encryption/decryption
 - Key exchange (i.e. used to encrypt AES symmetric key)
 - Digital signatures
- In one direction, RSA provides:
 - Confidentiality through encryption
 - Authentication and non-repudiation through signature verification
- In the inverse direction, RSA provides:
 - Confidentiality through decryption
 - Authentication and non-repudiation through signature generation

RSA Public Key Algorithm

- Based on factoring large numbers into their prime numbers
 - A prime number is a positive whole number whose only factors (i.e. integer divisors) are 1 and the number itself
 - E.g. 2, 3, 5, 7, 11, 13, 17, 19, 23, ...
 - Prime number factoring is
 - Easy when you know the result and one of the factors
 - 6,700,283 = 1889 * 3547
 - Difficult when you do not know the factors, and the result is large
 - 6,700,283 = prime1 * prime2

912,000,833,142,392,234,931,095,438,312,170,357,695,712,756,726,097,734,441,072,301,836,8 39,393,353,139,295,831,007,333,431,845,325,988,055,078,535,723,070,121,899,982,515,821,09 6.513.935.693.429.159.810.068.629.730.360.987.721.191.239.128.388.101.705.884.309.757.897. 995,146,963,367,920,258,875,045,283,800,013,428,503,089,286,243,910,365,443,336,583,304,5 89,741,301,149,906,707,508,832,951,802,034,609,255,816,376,427,847,745,175,505,389,216,57 5,446,117,214,435,309,308,014,792,888,796,704,735,885,959,753,047,089,134,349,280,135,328, 216,026,587,690,550,563,014,619,967,646,165,581,934,916,994,388,164,807,475,497,618,817,1 78,492,168,759,798,526,076,195,659,132,696,724,374,189,538,701,725,588,364,053,265,311,71 3,122,599,620,063,110,587,984,125,160,066,509,094,636,495,654,197,043,440,384,099,590,663, 387,607,347,763,569,889,588,046,648,769,380,051,353,352,323,215,616,700,132,767,221,738,2 55,618,066,992,935,073,985,886,089,858,691,117,257,124,338,259,178,666,315,503,726,679,90 4,506,880,795,225,928,179,249,708,512,521,519,802,379,088,471,059,576,692,488,554,724,378, 606,462,675,913,887,571,281,558,908,666,408,509,112,360,978,089,673,490,666,194,566,892,4 24,767,464,525,985,354,883,620,245,066,389,972,670,528,760,628,056,151,340,458,770,638,78 3,170,937,336,003,358,144,954,416,252,316,459,167,693,365,704,770,051,596,394,325,584,518, 899,185,083,613,743,340,976,318,518,122,032,762,826,960,167,883,646,888,151,502,959,194,1 55,684,395,680,807,784,172,903,618,731,005,977,092,813,955,195,470,328,083,428,604,222,13 8,565,171,106,482,154,997,950,843,259,717,191,116,046,110,961,976,117,683,744,708,282,531, 877,426,978,230,302,213,288,137,147

prime₁ * prime₂ =

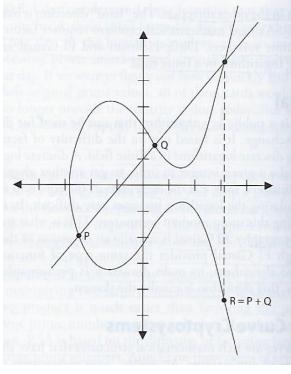

912,000,833,142,392,234,931,095,438,312. 39,393,353,139,295,831,007,333,431,845,3 6,513,935,693,429,159,810,068,629,730,36 995,146,963,367,920,258,875,045,283,800 89,741,301,149,906,707,508,832,951,802,0 5,446,117,214,435,309,308,014,792,888,79 216,026,587,690,550,563,014,619,967,646 78,492,168,759,798,526,076,195,659,132,6 3,122,599,620,063,110,587,984,125,160,06 387,607,347,763,569,889,588,046,648,769 55,618,066,992,935,073,985,886,089,858,6 4,506,880,795,225,928,179,249,708,512,52 606,462,675,913,887,571,281,558,908,666 24,767,464,525,985,354,883,620,245,066,3 3,170,937,336,003,358,144,954,416,252,31 899,185,083,613,743,340,976,318,518,122 55,684,395,680,807,784,172,903,618,731,0 8,565,171,106,482,154,997,950,843,259,71 877,426,978,230,302,213,288,137,147

Public Key algorithms

- Fundamental security elements in cryptosystems, applications and protocols
- Assure confidentiality, authenticity and non-repudiation of electronic communications and data storage
- Provide:
 - Key distribution and secrecy (e.g. Diffie—Hellman key exchange)
 - Digital signatures (e.g. Digital Signature Algorithm)
 - Both: key distribution and secrecy and digital signatures (e.g., RSA, ECC)

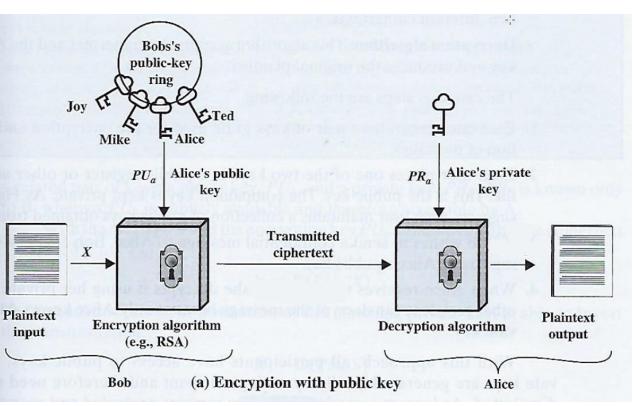
Elliptic-curve cryptography (ECC)

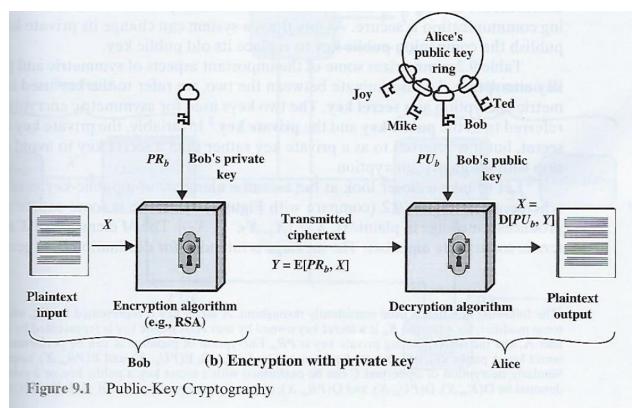
- Alternate approach to public-key cryptography based on algebraic structure of elliptic curves (based on Galois fields)
- Provides much the same security functionality as Diffie-Hellman and RSA:
 - Encryption/decryption (confidentiality)
 - Secure key distribution (authenticity, confidentiality)
 - Digital signatures (authenticity, non-repudiation)



- ECC's is much more efficient than RSA and the other asymmetric algorithms
 - Requires less bits and smaller keys than RSA for achieving the same level of security in its calculations and other algorithms
 - ECC's efficiency makes it very good for wireless devices and cellular phones with limited processing capacity, storage, power supply and bandwidth

Elliptic-curve cryptography (ECC)

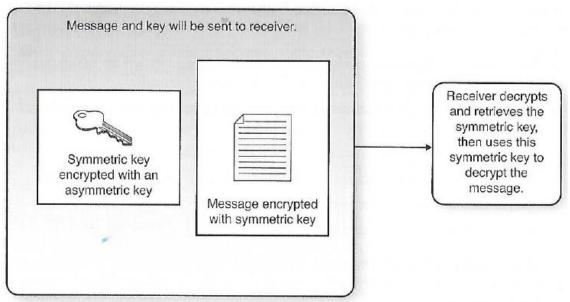

Elliptic-curve Diffie—Hellman (ECDH) is a variant of the Diffie—Hellman protocol using elliptic-curve cryptography


- A key agreement protocol that allows two parties, each having an elliptic-curve public-private key pair, to establish a shared secret over an insecure channel
- The shared secret may be directly used as a key, or to derive another key
- The key, or the derived key, can then be used to encrypt subsequent communications using a symmetric-key cipher

Example of an elliptic curve

Public Key Management

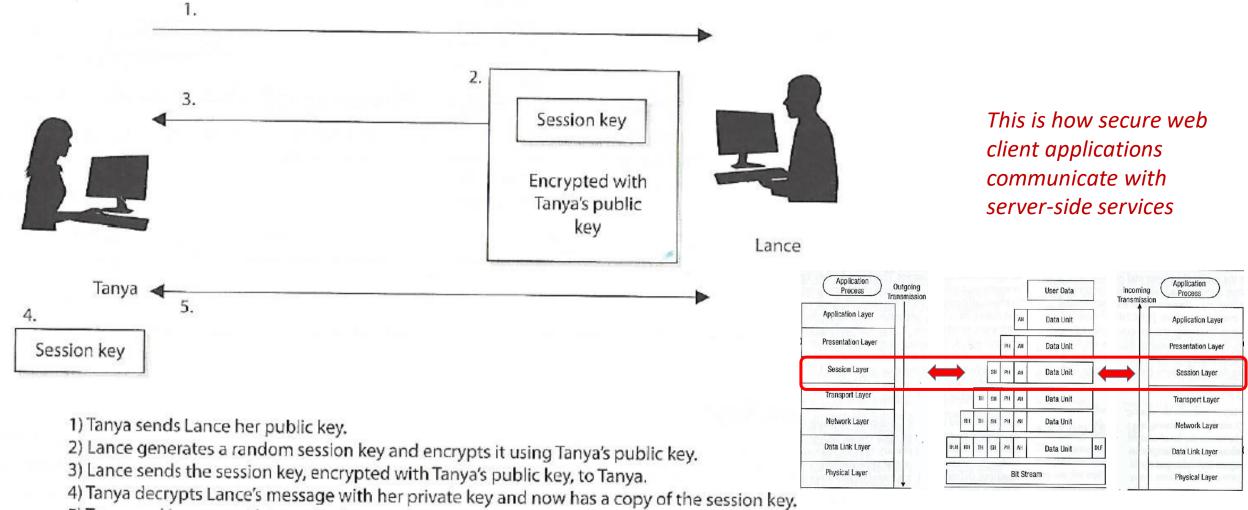
Stallings, W. (2014) Cryptography and Network Security


Agenda

- √ Cryptography terminology
- ✓ Symmetric Key Cryptography
 - ✓ Symmetric stream cryptography
 - ✓ Symmetric block cryptography
- √ Key sharing problem
- ✓ Public Key Cryptography
 - ✓ Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - ✓ RSA algorithm
- Hybrid-Cryptography
 - Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- If we have time: Brief review of Hashing & Digital Signatures

Hybrid Encryption (a.k.a. "digital envelope")

Symmetric and asymmetric and algorithms are often used together


- Public key cryptography's asymmetric algorithm is used to create public and private keys for secure automated key distribution
- Symmetric algorithm is used to create secret keys for rapid encryption/decryption of bulk data

MIS 4596

Session keys

<u>Single-use</u> symmetric keys used to encrypt messages between two users in an individual communication session

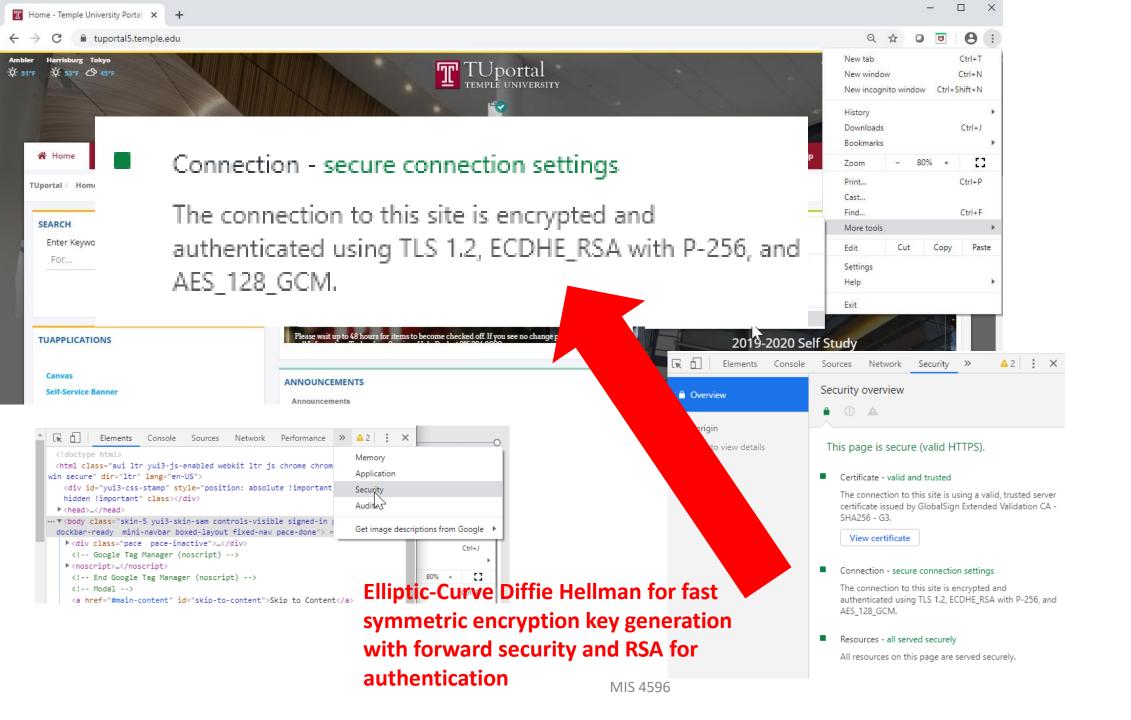
MIS 4596

5) Tanya and Lance use this session key to encrypt and decrypt messages to each other.

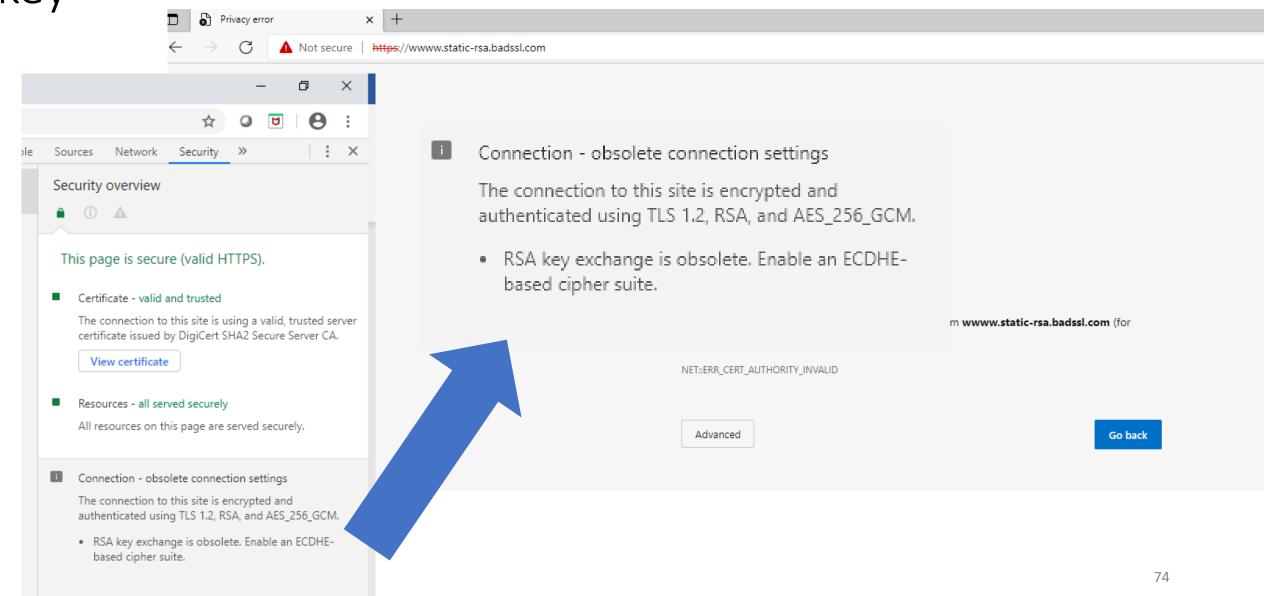
Perfect Forward Secrecy (PFS) or Forward Secrecy (FS)

Designed to prevent the compromise of a long-term secret key from affecting the confidentiality of past conversations

- Protects encrypted data recorded in past sessions against future attacks and compromises of private or secret keys
- Diffie-Hellman and RSA are used together to protect encrypted communications and sessions recorded in the past from being retrieved and decrypted in the future if long-term secret or private keys are compromised in the future

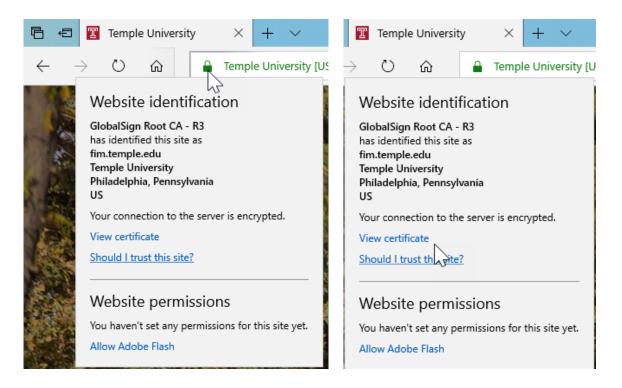

https://www.wired.com/2016/11/what-is-perfect-forward-secrecy/

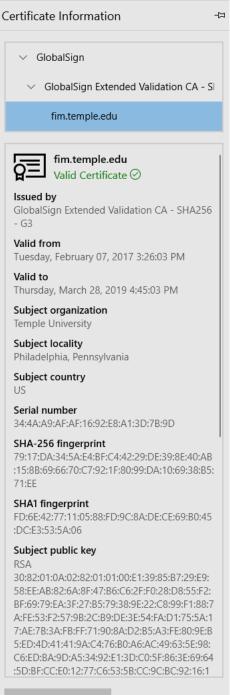
Example of a simple instant messaging protocol employing forward secrecy:


- 1. Alice and Bob each generate a pair of long-term, asymmetric public and private keys, verification establishes confidence that the claimed owner of a public key is the actual owner
- 2. Alice and Bob use a key exchange algorithm such as Diffie–Hellman, to securely agree on a short-term symmetric session key
 - They use the asymmetric keys from step 1 only to authenticate one another during this process
- 3. Alice sends Bob a message, encrypting it with a symmetric cipher using the session key negotiated in step 2
- 4. Bob decrypts Alice's message using the key negotiated in step 2
- 5. The symmetric session key exchange process repeats for each new message sent, starting from step 2 (switching Alice and Bob's roles as sender/receiver as appropriate)
 - Step 1 is never repeated
- Forward secrecy is achieved by generating new session keys for each message
 - It ensures that past communications cannot be decrypted if one of the keys generated in an iteration of step 2 is compromised, since such a key is only used to encrypt a single message
 - It also ensures that past communications cannot be decrypted if the long-term private keys from step 1 are compromised
- However, masquerading as Alice or Bob would be possible going forward if this occurred, possibly compromising all future messages

Perfect Forward Secrecy

- Forward secrecy is present in several major protocol implementations:
 - IPsec (RFC 2412) as an optional feature
 - Transport Layer Security (TLS)
 - Cipher suites based on Diffie—Hellman key exchange (DHE-RSA, DHE-DSA)
 - Elliptic curve Diffie—Hellman key exchange (ECDHE-RSA, ECDHE-ECDSA)
 - OpenSSL supports forward secrecy using elliptic curve Diffie—Hellman since V1.0
 - Off-the-Record Messaging, a cryptography protocol and library for many instant messaging clients


Insecure detection of the use of a static RSA encryption key



Viewing Digital Certificate

Microsoft Edge

- 1. Click the padlock on the URL bar
- 2. Click View certificate link

Services of cryptosystems

- ✓ **Confidentiality** Renders information unintelligible except by authorized entities
- ✓ **Authentication** Verifies the identity of the user or system that created, requested or provided the information
- ✓ Nonrepudiation Ensure the sender cannot deny sending the information
- **Integrity** Data has not been altered in an unauthorized manner since it was created, transmitted, or stored

Agenda

- √ Cryptography terminology
- ✓ Symmetric Key Cryptography
 - ✓ Symmetric stream cryptography
 - ✓ Symmetric block cryptography
- √ Key sharing problem
- ✓ Public Key Cryptography
 - ✓ Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - ✓ RSA algorithm
- √ Hybrid-Cryptography
 - ✓ Perfect Forward Secrecy
- Where do cryptographic controls go in the FedRAMP System Security Plan
- If we have time: Brief review of Hashing & Digital Signatures

Where in the FedRAMP System Security Plan would you look for information to help you assess the security of the Titan Information System?

FEDRAMP SYSTEM SECURITY PLAN (SSP) HIGH BASELINE TEMPLATE

CSP Name | Information System Name

Version #.#, Date

TABLE OF CONTENTS

	1.	INFORMATION SYSTEM NAME/TITLE				
	2.	INFORMAT	ION SYSTEM CATEGORIZATION1			
		2.1.	Information Types			
		2.2.	Security Objectives Categorization (FIPS 199)			
		2.3.	Digital Identity Determination			
	3.	INFORMAT	ION SYSTEM OWNER 4			
	4.	AUTHORIZI	NG OFFICIALS4			
	5.	OTHER DES	IGNATED CONTACTS4			
	6.	ASSIGNME	NT OF SECURITY RESPONSIBILITY5			
	7.	INFORMAT	ION SYSTEM OPERATIONAL STATUS 6			
	8.	INFORMAT	ION SYSTEM TYPE			
		8.1.	Cloud Service Models			
		8.2.	Cloud Deployment Models			
		8.3.	Leveraged Authorizations			
	9.	GENERAL S	YSTEM DESCRIPTION9			
		9.1.	System Function or Purpose			
	\Rightarrow	9.2.	Information System Components and Boundaries			
	\Rightarrow	9.3.	Types of Users			
	\Rightarrow	9.4.	Network Architecture			
	10.	SYSTEM EN	VIRONMENT AND INVENTORY12			
		10.1.	Data Flow			
		10.2.	Ports, Protocols and Services			
\Rightarrow	11.	SYSTEM INT	TERCONNECTIONS			
	12.	LAWS, REG	ULATIONS, STANDARDS AND GUIDANCE17			
		12.1.	Applicable Laws and Regulations			
		12.2.	Applicable Standards and Guidance			
	13.	MINIMUM	SECURITY CONTROLS18			

Where do you look for encryption related controls that could help Titan?

NIST Special Publication 800-53 Revision 5

Security and Privacy Controls for Information Systems and Organizations

JOINT TASK FORCE

This publication is available free of charge from: https://doi.org/10.6028/NIST.SP.800-53r5

September 2020

INCLUDES UPDATES AS OF 12-10-2020; SEE PAGE XVII

U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary

National Institute of Standards and Technology Walter Copan, NIST Director and Under Secretary of Commerce for Standards and Technology

CLASS	FAMILY	IDENTIFIER
Management	Risk Assessment	RA
Management	Planning	PL
Management	System and Services Acquisition	SA
Management	Certification, Accreditation, and Security Assessments	CA
Operational	Personnel Security	PS
Operational	Physical and Environmental Protection	PE
Operational	Contingency Planning	CP
Operational Configuration Management		CM
Operational	Maintenance	MA
Operational	SI	
Operational Media Protection		MP
Operational	Incident Response	IR
Operational	Awareness and Training	AT
Technical	Identification and Authentication	IA
Technical	Access Control	AC
Technical Audit and Accountability		AU
Technical	System and Communications Protection	SC

CNTL	CONTROL NAME		INITIAL CONTROL BASELINES		
NO.			LOW	MOD	HIGH
	System and Com	munica	tions Protection		
SC-1	System and Communications Protection Policy and Procedures	P1	SC-1	SC-1	SC-1
SC-2	Application Partitioning	P1	Not Selected	SC-2	SC-2
SC-3	Security Function Isolation	P1	Not Selected	Not Selected	SC-3
SC-4	Information in Shared Resources	P1	Not Selected	SC-4	SC-4
SC-5	Denial of Service Protection	P1	SC-5	SC-5	SC-5
SC-6	Resource Availability	P0	Not Selected	Not Selected	Not Selected
SC-7	Boundary Protection	P1	SC-7	SC-7 (3) (4) (5) (7)	SC-7 (3) (4) (5) (7) (8) (18) (21)
SC-8	Transmission Confidentiality and Integrity	P1	Not Selected	SC-8 (1)	SC-8 (1)
SC-9	Withdrawn				
SC-10	Network Disconnect	P2	Not Selected	SC-10	SC-10
SC-11	Trusted Path	P0	Not Selected	Not Selected	Not Selected
SC-12	Cryptographic Key Establishment and Management	P1	SC-12	SC-12	SC-12 (1)
SC-13	Cryptographic Protection	P1	SC-13	SC-13	SC-13
SC-14	Withdrawn				
SC-15	Collaborative Computing Devices	P1	SC-15	SC-15	SC-15
SC-16	Transmission of Security Attributes	P0	Not Selected	Not Selected	Not Selected
SC-17	Public Key Infrastructure Certificates	P1	Not Selected	SC-17	SC-17
SC-18	Mobile Code	P2	Not Selected	SC-18	SC-18
SC-19	Voice Over Internet Protocol	P1	Not Selected	SC-19	SC-19
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	P1	SC-20	SC-20	SC-20
SC-21	Secure Name /Address Resolution Service (Recursive or Caching Resolver)	P1	SC-21	SC-21	SC-21
SC-22	Architecture and Provisioning for Name/Address Resolution Service	P1	SC-22	SC-22	SC-22
SC-23	Session Authenticity	P1	Not Selected	SC-23	SC-23
SC-24	Fail in Known State	P1	Not Selected	Not Selected	SC-24
SC-28	Protection of Information at Rest	P1	Not Selected	SC-28	SC-28
SC-39	Process Isolation	P1	SC-39	SC-39	SC-39

SC-12 CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT

<u>Control</u>: The organization establishes and manages cryptographic keys for required cryptography employed within the information system in accordance with [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

<u>Supplemental Guidance</u>: Cryptographic key management and establishment can be performed using manual procedures or automated mechanisms with supporting manual procedures. Organizations define key management requirements in accordance with applicable federal laws, Executive Orders, directives, regulations, policies, standards, and guidance, specifying appropriate options, levels, and parameters. Organizations manage trust stores to ensure that only approved trust anchors are in such trust stores. This includes certificates with visibility external to organizational information systems and certificates related to the internal operations of systems. Related controls: SC-13, SC-17.

Control Enhancements:

- (1) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | AVAILABILITY
 - The organization maintains availability of information in the event of the loss of cryptographic keys by users.
 - <u>Supplemental Guidance</u>: Escrowing of encryption keys is a common practice for ensuring availability in the event of loss of keys (e.g., due to forgotten passphrase).
- (2) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | SYMMETRIC KEYS
 - The organization produces, controls, and distributes symmetric cryptographic keys using [Selection: NIST FIPS-compliant; NSA-approved] key management technology and processes.
- (3) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | ASYMMETRIC KEYS
 - The organization produces, controls, and distributes asymmetric cryptographic keys using [Selection: NSA-approved key management technology and processes; approved PKI Class 3 certificates or prepositioned keying material; approved PKI Class 3 or Class 4 certificates and hardware security tokens that protect the user's private key].
- (4) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | PKI CERTIFICATES [Withdrawn: Incorporated into SC-12].
- (5) CRYPTOGRAPHIC KEY ESTABLISHMENT AND MANAGEMENT | PKI CERTIFICATES / HARDWARE TOKENS [Withdrawn: Incorporated into SC-12].

References: NIST Special Publications 800-56, 800-57.

Priority and Baseline Allocation:

P1	LOW SC-12	MOD SC-12	HIGH SC-12 (1)
----	-----------	-----------	----------------

CNTL	CONTROL NAME		INITIAL CONTROL BASELINES		
NO.			LOW	MOD	HIGH
	System and Com	munica	tions Protection		
SC-1	System and Communications Protection Policy and Procedures	P1	SC-1	SC-1	SC-1
SC-2	Application Partitioning	P1	Not Selected	SC-2	SC-2
SC-3	Security Function Isolation	P1	Not Selected	Not Selected	SC-3
SC-4	Information in Shared Resources	P1	Not Selected	SC-4	SC-4
SC-5	Denial of Service Protection	P1	SC-5	SC-5	SC-5
SC-6	Resource Availability	P0	Not Selected	Not Selected	Not Selected
SC-7	Boundary Protection	P1	SC-7	SC-7 (3) (4) (5) (7)	SC-7 (3) (4) (5) (7) (8) (18) (21)
SC-8	Transmission Confidentiality and Integrity	P1	Not Selected	SC-8 (1)	SC-8 (1)
SC-9	Withdrawn				
SC-10	Network Disconnect	P2	Not Selected	SC-10	SC-10
SC-11	Trusted Path	P0	Not Selected	Not Selected	Not Selected
SC-12	Cryptographic Key Establishment and Management		SC-12	SC-12	SC-12 (1)
SC-13	Cryptographic Protection	P1	SC-13	SC-13	SC-13
SC-14	Withdrawn				
SC-15	Collaborative Computing Devices	P1	SC-15	SC-15	SC-15
SC-16	Transmission of Security Attributes	P0	Not Selected	Not Selected	Not Selected
SC-17	Public Key Infrastructure Certificates	P1	Not Selected	SC-17	SC-17
SC-18	Mobile Code	P2	Not Selected	SC-18	SC-18
SC-19	Voice Over Internet Protocol	P1	Not Selected	SC-19	SC-19
SC-20	Secure Name /Address Resolution Service (Authoritative Source)	P1	SC-20	SC-20	SC-20
SC-21	Secure Name /Address Resolution Service (Recursive or Caching Resolver)	P1	SC-21	SC-21	SC-21
SC-22	Architecture and Provisioning for Name/Address Resolution Service	P1	SC-22	SC-22	SC-22
SC-23	Session Authenticity	P1	Not Selected	SC-23	SC-23
SC-24	Fail in Known State	P1	Not Selected	Not Selected	SC-24
SC-28	Protection of Information at Rest	P1	Not Selected	SC-28	SC-28
SC-39	Process Isolation	P1	SC-39	SC-39	SC-39

SC-13 CRYPTOGRAPHIC PROTECTION

<u>Control</u>: The information system implements [Assignment: organization-defined cryptographic uses and type of cryptography required for each use] in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards.

Supplemental Guidance: Cryptography can be employed to support a variety of security solutions including, for example, the protection of classified and Controlled Unclassified Information, the provision of digital signatures, and the enforcement of information separation when authorized individuals have the necessary clearances for such information but lack the necessary formal access approvals. Cryptography can also be used to support random number generation and hash generation. Generally applicable cryptographic standards include FIPS-validated cryptography and NSA-approved cryptography. This control does not impose any requirements on organizations to use cryptography. However, if cryptography is required based on the selection of other security controls, organizations define each type of cryptographic use and the type of cryptography required (e.g., protection of classified information: NSA-approved cryptography; provision of digital signatures: FIPS-validated cryptography). Related controls: AC-2, AC-3, AC-7, AC-17, AC-18, AU-9, AU-10, CM-11, CP-9, IA-3, IA-7, MA-4, MP-2, MP-4, MP-5, SA-4, SC-8, SC-12, SC-28, SI-7.

Control Enhancements: None.

- CRYPTOGRAPHIC PROTECTION | FIPS-VALIDATED CRYPTOGRAPHY [Withdrawn: Incorporated into SC-13].
- (2) CRYPTOGRAPHIC PROTECTION | NSA-APPROVED CRYPTOGRAPHY [Withdrawn: Incorporated into SC-13].
- (3) CRYPTOGRAPHIC PROTECTION | INDIVIDUALS WITHOUT FORMAL ACCESS APPROVALS [Withdrawn: Incorporated into SC-13].
- (4) CRYPTOGRAPHIC PROTECTION | DIGITAL SIGNATURES [Withdrawn: Incorporated into SC-13].

References: FIPS Publication 140; Web: http://csrc.nist.gov/cryptval, http://www.cnss.gov.

Priority and Baseline Allocation:

P1	LOW SC-13	MOD SC-13	HIGH SC-13
PI	LOW 5C-13	MOD SC-13	HIGH 50-13

Where do you document this information in your SSP?

FEDRAMP SYSTEM SECURITY PLAN (SSP) HIGH BASELINE TEMPLATE

CSP Name | Information System Name

Version <u>#.#</u>, Date

TABLE OF CONTENTS

1.	INFORMA	TION SYSTEM NAME/TITLE
2.	INFORMA	TION SYSTEM CATEGORIZATION
	2.1.	Information Types
	2.2.	Security Objectives Categorization (FIPS 199)
	2.3.	Digital Identity Determination
3.	INFORMA	TION SYSTEM OWNER
4.	AUTHORIZ	ING OFFICIALS
5.	OTHER DE	SIGNATED CONTACTS
6.	ASSIGNME	ENT OF SECURITY RESPONSIBILITY
7.	INFORMA	TION SYSTEM OPERATIONAL STATUS
8.	INFORMA	TION SYSTEM TYPE
	8.1.	Cloud Service Models
	8.2.	Cloud Deployment Models
	8.3.	Leveraged Authorizations
9.	GENERAL S	SYSTEM DESCRIPTION
	9.1.	System Function or Purpose
	9.2.	Information System Components and Boundaries
	9.3.	Types of Users
	9.4.	Network Architecture
10	. SYSTEM EI	NVIRONMENT AND INVENTORY1
	10.1.	Data Flow
	10.2.	Ports, Protocols and Services
11	. SYSTEM IN	ITERCONNECTIONS1
12	LAWS, REG	GULATIONS, STANDARDS AND GUIDANCE1
	12.1.	Applicable Laws and Regulations
	12.2.	Applicable Standards and Guidance
13.	. MINIMUN	I SECURITY CONTROLS1
	13.1.	Access Control (AC)
		Access Control Policy and Procedures Requirements (H)
	AC-2	Account Management (H)
		AC-2 (1) Control Enhancement (M) (H)
		AC-2 (3) Control Enhancement (H)
		AC-2 (4) Control Enhancement (H)
		AC-2 (5) Control Enhancement (H)
		AC-2 (7) Control Enhancement (H)
		AC-2 (10) Control Enhancement (M) (H)
		AC-2 (11) Control Enhancement (H)
		AC-2 (12) Control Enhancement (H)

FEDRAMP SYSTEM SECURITY PLAN (SSP) HIGH BASELINE TEMPLATE

Cloud Service Provider Name
Information System Name
Version #
Version Date

CONTROLLED UNCLASSIFIED INFORMATION

FEDRAMP SYSTEM SECURITY PLAN (SSP) HIGH BASELINE TEMPLATE

CSP Name | Information System Name

Version <u>#.#</u>, Date

	SA-9 (5) Control Enhancement (M) (H)	
	SA-10 Developer Configuration Management (M) (H)	. 316
	SA-10 (1) Control Enhancement (M) (H)	
	SA-11 Developer Security Testing and Evaluation (M) (H)	. 318
	SA-11 (1) Control Enhancement (M) (H)	
	SA-11 (2) Control Enhancement (M) (H)	
	SA-11 (8) Control Enhancement (M) (H).	
	SA-12 Supply Chain Protection (H)	
	SA-15 Development Process, Standards, and Tools (H)	
	SA-16 Developer-Provided Training (H)	
	SA-17 Developer Security Architecture and Design (H)	
13.1		
	SC-1 System and Communications Protection Policy and Procedures (H)	
	SC-2 Application Partitioning (M) (H)	. 326
	SC-3 Security Function Isolation (H)	327
	SC-4 Information in Shared Resources (M) (H)	328
	SC-5 Denial of Service Protection (L) (M) (H)	329
	SC-6 Resource Availability (M) (H)	329
	SC-7 Boundary Protection (L) (M) (H)	. 330
	SC-7 (3) Control Enhancement (M) (H)	. 331
	SC-7 (4) Control Enhancement (H)	
	SC-7 (5) Control Enhancement (M) (H)	
	SC-7 (7) Control Enhancement (M) (H)	
	SC-7 (a) Control Enhancement (H)	
	SC-7 (12) Control Enhancement (H)	
	SC-7 (13) Control Enhancement (H)	
	SC-7 (18) Control Enhancement (M) (H)	
	SC-7 (20) Control Enhancement (H) SC-7 (21) Control Enhancement (H)	
	SC-8 Transmission confidentiality and Integrity (M) (H)	
	SC-8 (1) Control Enhancement (M) (H)	
	SC-10 Network Disconnect (H)	
	SC-12 Cryptographic Key Establishment & Management (L) (M) (H)	
	SC-12 (1) Control Enhancement (H)	
	SC-12 (2) Control Enhancement (M) (H)	
	SC-12 (3) Control Enhancement (M) (H)	. 345
	SC-13 Use of Cryptography (L) (M) (H)	. 346
	SC-15 Collaborative Computing Devices (M) (H)	. 347
	SC-17 Public Key Infrastructure Certificates (M) (H)	
	SC-18 Mobile Code (M) (H)	349
	SC-19 Voice Over Internet Protocol (M) (H)	350
	SC-20 Secure Name / Address Resolution Service (Authoritative Source) (L) (M) (H)	351
	SC-21 Secure Name / Address Resolution Service (Recursive or Caching Resolver) (L) (M) (H)	352
	SC-22 Architecture and Provisioning for Name / Address Resolution Service (L) (M) (H)	353
	SC-23 Session Authenticity (M) (H)	
	11 11 1	

Controlled Unclassified Information

SC-12 Cryptographic Key Establishment & Management (L) (M) (H)

The organization establishes and manages cryptographic keys for required cryptography employed within the information system in accordance with [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

SC-12 Additional FedRAMP Requirements and Guidance:

Guidance: Federally approved and validated cryptography.

SC-12	Control Summary Information					
Responsible Role:	Responsible Role:					
Parameter SC-12:	Parameter SC-12:					
Implementation S	tatus (check all that apply):					
☐ Implemented						
☐ Partially imple	mented					
☐ Planned						
☐ Alternative imp	plementation					
☐ Not applicable						
Control Originatio	n (check all that apply):					
☐ Service Provide	er Corporate					
☐ Service Provide	er System Specific					
☐ Service Provide	er Hybrid (Corporate and System Specific)					
☐ Configured by	☐ Configured by Customer (Customer System Specific)					
☐ Provided by Customer (Customer System Specific)						
☐ Shared (Service	☐ Shared (Service Provider and Customer Responsibility)					
☐ Inherited from	☐ Inherited from pre-existing FedRAMP Authorization for Click here to enter text. , Date of Authorization					

SC-12 What is the solution and how is it implemented?

xiii

FEDRAMP SYSTEM SECURITY PLAN (SSP) HIGH BASELINE TEMPLATE

Cloud Service Provider Name Information System Name Version #

Version Date

CONTROLLED UNCLASSIFIED INFORMATIO

FEDRAMP SYSTEM SECURITY PLAN (SSP) HIGH BASELINE TEMPLATE

CSP Name | Information System Name

Version #.#, Date

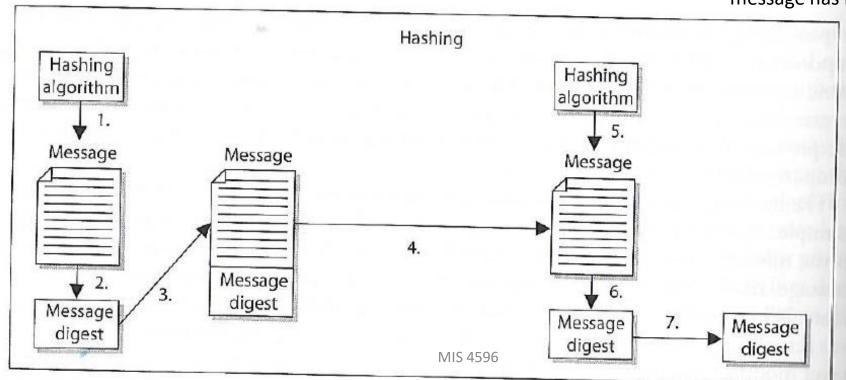
	SA-9 (5) Control Enhancement (M) (H)	
	SA-10 Developer Configuration Management (M) (H)	
	SA-10 (1) Control Enhancement (M) (H)	
	SA-11 Developer Security Testing and Evaluation (M) (H)	
	SA-11 (1) Control Enhancement (M) (H)	31
	SA-11 (8) Control Enhancement (M) (H).	
	SA-12 Supply Chain Protection (H)	
	SA-15 Development Process, Standards, and Tools (H)	
	SA-16 Developer-Provided Training (H)	32
	SA-17 Developer Security Architecture and Design (H)	32
13.1	System and Communications Protection (SC)	32
	SC-1 System and Communications Protection Policy and Procedures (H)	
	SC-2 Application Partitioning (M) (H)	
	SC-3 Security Function Isolation (H)	
	SC-4 Information in Shared Resources (M) (H)	
	SC-5 Denial of Service Protection (L) (M) (H)	
	SC-6 Resource Availability (M) (H)	
	SC-7 Boundary Protection (L) (M) (H)	
	SC-7 (3) Control Enhancement (M) (H)	
	SC-7 (4) Control Enhancement (H)	
	SC-7 (5) Control Enhancement (M) (H)	
	SC-7 (7) Control Enhancement (M) (H)	
	SC-7 (8) Control Enhancement (M) (H)	
	SC-7 (10) Control Enhancement (H) SC-7 (12) Control Enhancement (H)	
	SC-7 (12) Control Enhancement (H)	
	SC-7 (18) Control Enhancement (M) (H)	
	SC-7 (20) Control Enhancement (H)	
	SC-7 (21) Control Enhancement (H)	
	SC-8 Transmission confidentiality and Integrity (M) (H)	
	SC-8 (1) Control Enhancement (M) (H)	34
	SC-10 Network Disconnect (H)	34
	SC-12 Cryptographic Key Establishment & Management (L) (M) (H)	
_	SC-12 (1) Control Enhancement (H)	
7	SC-12 (2) Control Enhancement (M) (H)	
	SC-12 (3) Control Enhancement (M) (H)	
7	SC-15 Collaborative Computing Devices (M) (H)	
,	. 2	
	SC-17 Public Key Infrastructure Certificates (M) (H)	
	SC-18 Mobile Code (M) (H)	
	SC-19 Voice Over Internet Protocol (M) (H)	
	SC-20 Secure Name / Address Resolution Service (Authoritative Source) (L) (M) (H)	
	SC-21 Secure Name / Address Resolution Service (Recursive or Caching Resolver) (L) (M) (H)	
	SC-22 Architecture and Provisioning for Name / Address Resolution Service (L) (M) (H)	
	SC 22 Coming Aughterisin (AA) (LI)	25

SC-12 (1) CONTROL ENHANCEMENT (H)
The organization maintains availability of information in the event of the loss of cryptographic keys by users.

SC-12 (2) CONTROL ENHANCEMENT (M) (H) The organization produces, controls, and distributes symmetric cryptographic keys using [FedRAMP Selection: NIST FIPS-compliant] key management technology and processes.

SC-12 (3) CONTROL ENHANCEMENT (M) (H)
The organization produces, controls, and distributes
asymmetric cryptographic keys using [Selection: NSAapproved key management technology and processes;
approved PKI Class 3 certificates or prepositioned
keying material; approved PKI Class 3 or Class 4
certificates and hardware security tokens that protect
the user's private key].

SC-13 Use of Cryptography (L) (M) (H)
The information system implements [FedRAMP
Assignment: FIPS-validated or NSA-approved
cryptography] in accordance with applicable federal
laws, Executive Orders, directives, policies,
regulations, and standards.


Controlled Unclassified Information

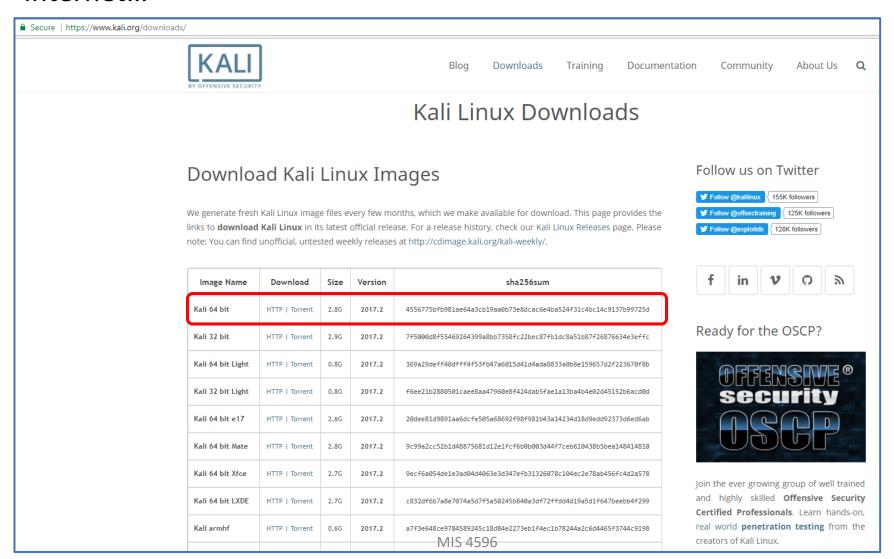
Agenda

- √ Cryptography terminology
- ✓ Symmetric Key Cryptography
 - ✓ Symmetric stream cryptography
 - ✓ Symmetric block cryptography
- √ Key sharing problem
- ✓ Public Key Cryptography
 - ✓ Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - ✓ RSA algorithm
- √ Hybrid-Cryptography
 - ✓ Perfect Forward Secrecy
- ✓ Where do cryptographic controls go in the FedRAMP System Security Plan
- If we have time: Brief review of Hashing & Digital Signatures

Quick Review: One-way Hash

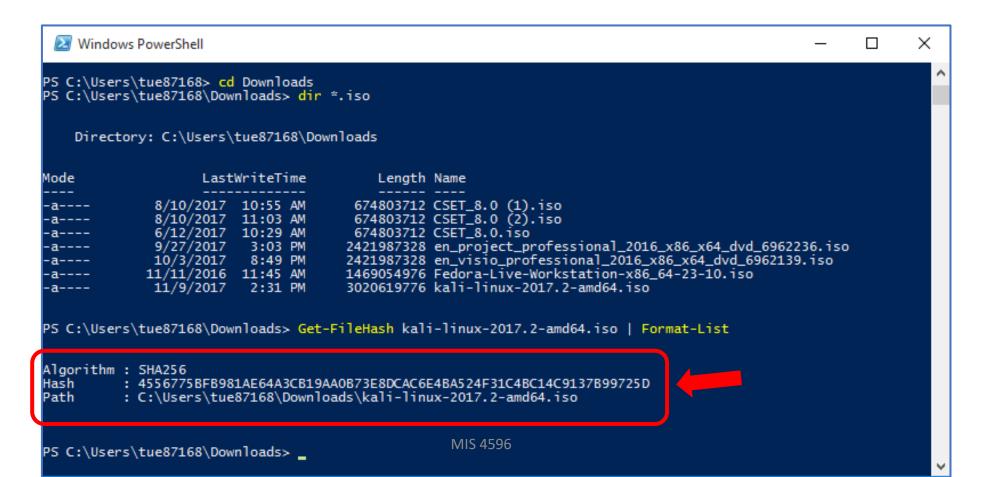
- Assures message integrity
- A function that takes a variable-length string (i.e. message) and produces a fixedlength value called a hash value
- Does not use keys

- Sender puts message through hashing function
- 2. Message digest generated
- Message digest appended to the message
- 4. Sender sends message to receiver
- Receiver puts message through hashing function
- 6. Receiver generates message digest value
- 7. Receiver compares the two message digests values. If they are the same, the message has not been altered

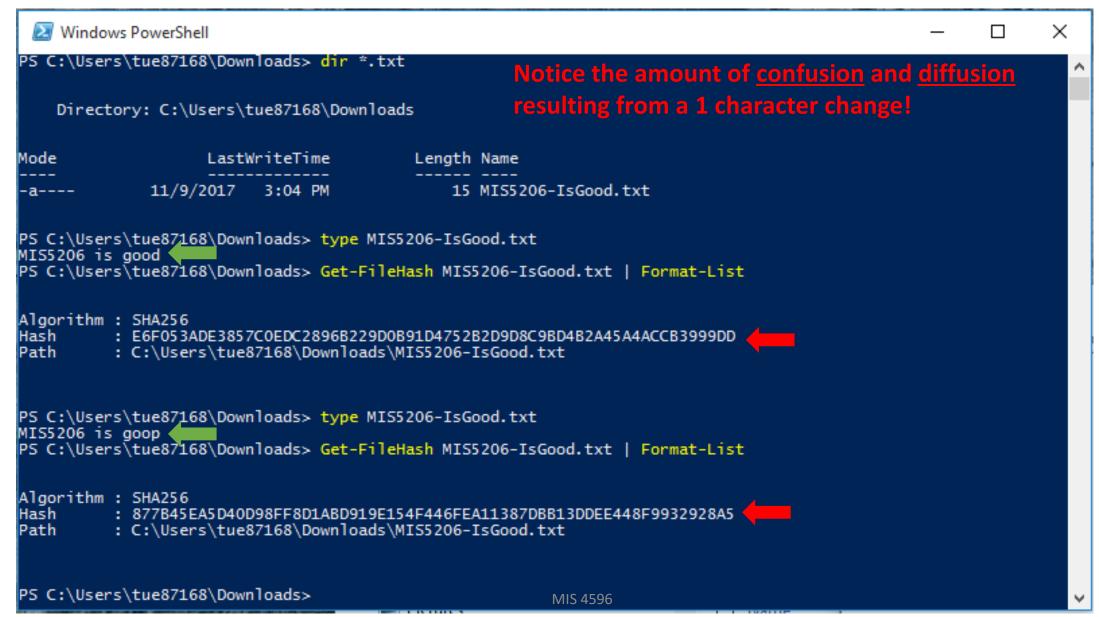

Note: Hashing results in fixed-sized output

- Names for the output of a hashing functions include "hash" and a message digest (md), because a hash "digests" an input of any size down to a fixed-sized output
 - No matter the size of the input, the out put is the same, for example the md5 hash function's output:
 - Letter 'a' in binary: 01000001 => md5 hash => 32-character string
 - Blu-ray disk digest => md5 hash => 32-character string
 - 6 TB hard drive digest => md5 hash => 32-character string

MIS 4596 87


One-way hash example...

Testing the integrity of a file (e.g. program) downloaded from the internet...



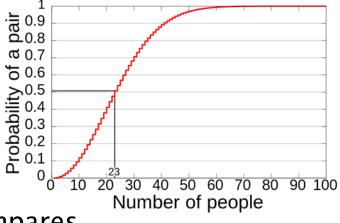
One-way hash example...

Image Name	Download	Size	Version	sha256sum
Kali 64 bit	HTTP Torrent	2.8G	2017.2	4556775bfb981ae64a3cb19aa0b73e8dcac6e4ba524f31c4bc14c9137b99725d

One-way hash example...

Cryptanalysis Attack

Collisions


- Two different messages with the same hash value
- Based on the "birthday paradox"
- Hash algorithms should be resistant to this attack

The birthday paradox, also known as the birthday problem, states that in a random group of 23 people, there is about a 50 percent chance that two people have the same birthday.

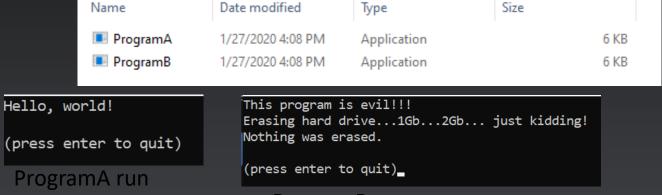
91 MIS 4596

Is the Birthday Attack Real?

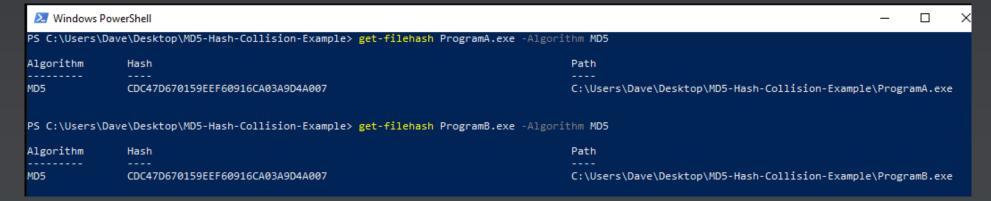
There are multiple reasons why this seems like a paradox

One is that when in a room with 22 other people, if a person compares
his or her birthday with the birthdays of the other people it would make
for only 22 comparisons—only 22 chances for people to share the same
birthday.

When all 23 birthdays are compared against each other, it makes for much more than 22 comparisons. How much more? Well, the first person has 22 comparisons to make, but the second person was already compared to the first person, so there are only 21 comparisons to make. The third person then has 20 comparisons, the fourth person has 19 and so on. If you add up all possible comparisons (22 + 21 + 20 + 19 + ... +1) the sum is 253 comparisons, or combinations.

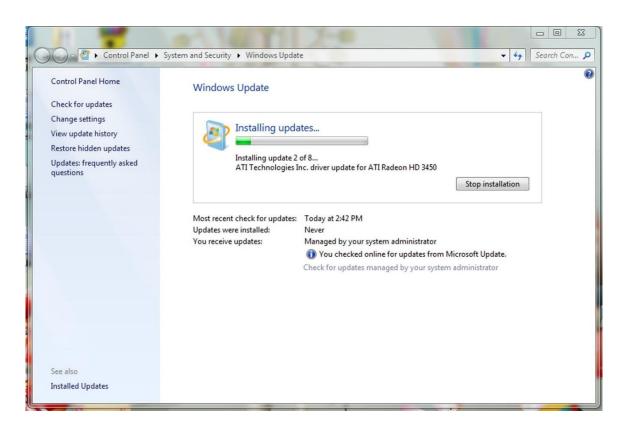

Consequently, each group of 23 people involves 253 comparisons, or 253 chances for matching birthdays.

92 MIS 4596


MD5 (Message Digest 5)

- A 128-bit hash algorithm, still in common use
- Has been broken
- 128-bit hash, but only need 2^{128/2} = 2⁶⁴ to find a collision
- Not strong enough for modern computers

Example of an MD5 hash collision:



ProgramB run

In 2012 malware Flame used a MD5 hash collision to hijack Microsoft Windows Update and spread itself across networks

- Flame collected audio, keystrokes, screenshots which it sent to a malicious server
- Found a collision within a single millisecond
- Cost ~\$200k computing time just for 1ms
- Attributed to advanced persistent threat group <u>Equation Group</u>
- Used in espionage attacks on countries

SHA -1 (Security Hash Algorithm 1)

- A 160-bit hash algorithm, still in common use
- Has been broken
- 160-bit hash, but only need $2^{160/2} = 2^{80}$ to find a collision
- No longer strong enough for modern computers

SHA-2 uses 224, 256, 384, and 512-bit hashes

- But... it is built using the design of SHA-1, and prone to the same weaknesses
- It's believed to be a matter of time before SHA-2 is also exploited

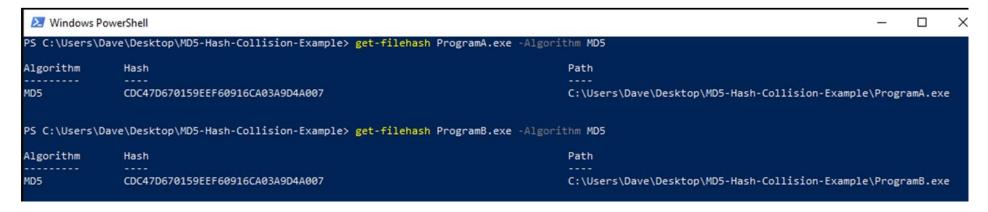
SHA-3 was recently ratified by NIST, the U.S. National Institute of Standards and Technology

• It was the result of a six-year hashing competition. Also uses 224-, 256-, 384-, 512-bit hashes

Why does this matter for businesses?

Business needs a reliable way to prove integrity of data, files, programs, that can be trusted

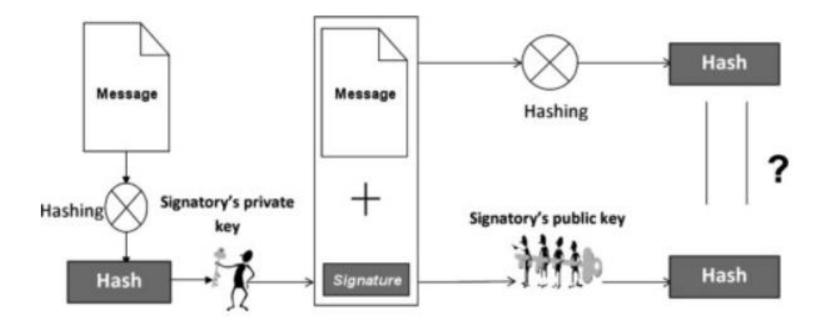
```
Hello, world!


(press enter to quit)

ProgramA run
```

```
This program is evil!!!
Erasing hard drive...1Gb...2Gb... just kidding!
Nothing was erased.

(press enter to quit)
```


ProgramB run

Digital Signature

The act of signing means encrypting the message's hash value with the private key

MIS 4596 97

Services of cryptosystems

- ✓ Confidentiality Renders information unintelligible except by authorized entities
- ✓ **Authentication** Verifies the identity of the user or system that created, requested or provided the information
- ✓ Nonrepudiation Ensure the sender cannot deny sending the information
- ✓ **Integrity** Data has not been altered in an unauthorized manner since it was created, transmitted, or stored

Summary of some characteristics of cryptographic algorithms

Feature / Algorithm	Hash	Symmetric	Asymmetric	
No. of Keys	0	1	2	
NIST recommended Key length	256 bits	128 bits	2048 bits	
Commonly used	SHA	AES	RSA	
Key Management/Sharing	N/A	Big issue	Easy & Secure	
Effect of Key compromise	N/A	Loss of both sender & receiver	Only loss for owner of Asymmetric key	
Speed	Fast	Fast	Relatively slow	
Complexity	Medium	Medium	High	
Examples	SHA-224, SHA-256,	AES, Blowfish, Serpent,	RSA, DSA, ECC,	
	SHA-384 or SHA-512	Twofish, 3DES, and RC4	Diffie-Hellman	

SHA – Secure Hash Algorithm

AES – Advanced Encryption Standard

RSA – Public key cryptosystem named after Ron **R**ivest, Adi **S**hamir and Leonard **A**dleman

https://www.cryptomathic.com/news-events/blog/differences-between-hash-functions-symmetric-asymmetric-algorithms

Agenda

- ✓ Team Project It is not too early to get started...
- ✓ Case Study 1
- √ Cryptography terminology
- ✓ Symmetric Key Cryptography
 - √ Symmetric stream cryptography
 - √ Symmetric block cryptography
- √ Key sharing problem
- ✓ Public Key Cryptography
 - ✓ Diffie-Hellman algorithm: symmetric key generation through asynchronous cryptography
 - ✓ RSA algorithm
- √ Hybrid-Cryptography
 - ✓ Perfect Forward Secrecy
- √ Where do cryptographic controls go in the FedRAMP System Security Plan
- ✓ Brief review: Hashing & Digital Signatures

Quiz

Which control is the BEST way to ensure that the data in a file have not been changed during transmission?

- a) Reasonableness check
- b) Parity bits
- c) Hash values
- d) Check digits

The PRIMARY reason for using digital signatures is to ensure data:

- a) confidentiality
- b) integrity
- c) availability
- d) Timeliness

Which of the following provides the GREATEST assurance for database password encryption?

- a) Secure hash algorithm-256 (SHA-256)
- b) Advanced encryption standard (AES)
- c) Secure Shell (SSH)
- d) Triple data encryption standard (3DES)

Email message authenticity and confidentiality is BEST achieved by signing the message using the:

- a) Sender's private key and encrypting the message using the receiver's public key
- b) Sender's public key and encrypting the message using the receiver's private key
- c) Receiver's private key and encrypting the message using the sender's public key
- d) Receiver's public key and encrypting the message using the sender's private key

Quiz

Which control is the BEST way to ensure that the data in a file have not been changed during transmission?

- a) Reasonableness check
- b) Parity bits
- c) Hash values
- d) Check digits

The PRIMARY reason for using digital signatures is to ensure data:

- a) confidentiality
- b) integrity
- c) availability
- d) Timeliness

Which of the following provides the GREATEST assurance for database password encryption?

- a) Secure hash algorithm-256 (SHA-256)
- b) Advanced encryption standard (AES)
- c) Secure Shell (SSH)
- d) Triple data encryption standard (3DES)

Email message authenticity and confidentiality is BEST achieved by signing the message using the:

- a) Sender's private key and encrypting the message using the receiver's public key
- b) Sender's public key and encrypting the message using the receiver's private key
- c) Receiver's private key and encrypting the message using the sender's public key
- d) Receiver's public key and encrypting the message using the sender's private key