Unit #4b

MIS5214
Application Security

Agenda

* Team Project Guidance

* Distributed Systems
 File Server Architecture
* Client/Server Architecture
* N-Tier Architecture
* Cloud Architecture
» Service Oriented Architecture (SOA)

* Example Cloud-based N-Tier SOA Application Development System
* Control Stages, Objectives, Application Security Testing
» Additional Best Practices

Agenda

* Distributed Systems
* File Server Architecture
* Client/Server Architecture
* N-Tier Architecture
* Cloud Architecture
 Service Oriented Architecture (SOA)

* Example Cloud-based N-Tier SOA Application Development System
* Control Stages, Objectives, Application Security Testing
* Additional Best Practices

File Server architecture

File server: a device that manages
file operations and is shared by
each client PC attached to a LAN

* The simplest configuration Client

* Applications and data control take =
place on the client computers.

* The file server simply holds shared
data

File Server
* File storage
* Record locking
* Acts like extra
hard disk to client
* Not very busy
» Significant LAN traffic

Client Client

— * Process/scan tables
* Application program
g — user interface
- database processing

— generate queries
* Handle integrity and security
* Full DBMS

Client

| —]
Local Area
Network

* Requests for * Entire file
data of data

* Requests e Lock status
to lock data P
o > Daa
File server

Limitations of File Server Architecture

e Excessive data movement
* Entire dataset must be transferred, instead of individual data records

* Need for powerful client workstations

e Each client workstation must devote memory and computational resources to
run a complete standalone application

* Decentralized data control
 Data file concurrency control, recovery, and security are complicated

File Server Architecture

_ Server
Client

D]
A
Entire file sent to client

Client request for data

File Server Architecture

) Server
Client

Client-Server Architecture -

LAN-based computing environment in which

* A central database server or engine performs all database commands sent to
it from client workstations

* Application programs on each client concentrate on user interface functions

Application processing is divided between client and server
Client manages the user interface

Client/Server Architecture

Server
Client Database server is responsible for data storage and query
—_ processing
Increased efficiency and control over File server
T A * Server only sends specific data, not entire files,
bbbl ! el which saves on network bandwidth
Client request for data e Computing load is carried out by the server

* Increasing security
* Decreasing computing demand on the clients

N-Tier Architecture

Presentation

il

Application

i

Database

N-tier architecture (also called multi-tier architecture) is a
software architecture pattern that divides an application into
multiple layers (tiers) to separate concerns and improve
scalability, security, and maintainability. Each tier is responsible
for a specific function, and they communicate with each other
over a network.

THREE-TIER ARGHITEGTURE

CLIENT APPLICATION DATABASE
TIER TIER TIER

O] §— &

Client Computer

Application Server DataBase Server

Presentation tier . "
>GET SALES ET i

The top-most level of the application TaTAL
is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

A
Logic tier
This layer coordinates the
application, processes commands, \
makes logical decisions and . - GETLISTOFALL ® ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and . EASTR AR e A

processes data between the two
surrounding layers.

QUERY SALE 2

Data tier / SALE 4
Here information is stored and retrieved \

from a database or file system. The

information is then passed back to the
logic tier for processing, and then .
eventually back to the user. —

@

S Sto ragé
Database

Comparison of N-Tier Architectures|

N-Tier Model Number of Components Use Cases Security Measures
Layers
. ; : Small applications, standalone
Art:lt;{:f::;ure 2 jg:::gagim(%zng .??;:; desktop apps;;;gshtwei ght web || Basic Authentication, Database Encryption, Network Firewalls.
- Presentation (Client UI)
3-Tier 3 - Application (Business ||Web applications, SaaS solutions, Web Application Firewall (WAF), TAM (QOAuth?, MFA),
Architecture Logic, APT) enterprise applications. Database Encryption (AES-256).
- Data (Database)
- Presentation (Client UT)
- Application (Business
4-Tier 4 Logic, API) Highly secure enterprise SaaS, SIEM Logging, Threat Intelligence, Privileged Access
Architecture - Data (Database) fintech, healthcare apps. Management (PAM), IDS/TPS.
- Security & Compliance
Layer (IAM, SIEM, IDS)
- Presentation (Client UT)
- Application (Business
Logic, APT)
5 Tier - Di_ita (Dartabasg) }Jh'ssion-c_ri_tical SaaS, Cloud Security Posture Management (CSPM), Zero Trust
Architecture 5 - Security & Compliance || government, military, large-scale | Network Access (ZTNA), Secure Cloud VPN, Network ACLs,
Layer cloud applications. Compliance Controls (SOC 2, HIPAA).
- Infrastructure Laver
(Cloud & Network
Security)

MIS 5214 Security Architecture

MIS 5214 Security Architecture

Layer
Application
Layer {(UL/Client
Layer)

Business Layer
(Logic &
Processing

Layer)

Data Access
Layer
(Middleware,
API, Security
Layer)

Database Layer
(Storage & Data
Management
Layer)

Definition

The user-facing interface where

users interact with the system,

The core processing engine of
the application that applies

business rules.

Acts as an intermediary between
the Business Layer and the
Database Layer, ensuring secure

and optimized data exchange.

Stores, retrieves, and manages
structured/unstructured data.

Role in System
Architecture

Displays content, collects
user inputs, and sends
requests to the Business

Layer.

Manages authentication,
processes user requests,
enforces policies, and
interacts with the Data
Access Layer.

Handles AP
communication, enforces
securty measures (1AM,
RBALC), and optimizes
data transactions.

Ensures data integrity,
security, and availability
with backup, encryption,
and replication

strategies.

Example Techneologies

‘Web Browsers (Chrome,
Edge), Mobile Apps (05,
Android), Web Apps
[React, Angular, Vue,js).

Jawva, MET, Python
(Django, Flask), Mode.js,
Spring Boot.

AP| Gateway (Kong,
Apigee, AWS AP
Gateway), Oauth2, IWT,
GraphQL, REST APls,
OFRM (Hibernate,
SCLAlchenmy).

50L Databases
(PostgreS0L, MySQL, SOL
Server), MoSCL
(MongoDE, DynamaoDE,
Caszandra), Cloud
Storage (AWS 53, Azure
Blok).

N-Tier Applications

| Presentation Layer

PRESENTATION

Ul Components

Business Layer
Business Workflow

Exception Handling Records Handling Utilities

Security

DATA ACCESS
(C#, VB, NHibernate, CodeSmith, DLING)

; Data Access Layer

Communication

Data Access components Service Gateways

=
&
©
=
©
()
™
c
0
=
©
C
o
=
[
o
(=8
O

DATA STORAGE

(SOL Server, Oracle, MySQL) |Database Layer

Database

SQL Queries Stored Procedures

Where’s the programming code?

N-Tier Applications

Service-oriented application

Web
application

|

}

Integration
sarvica

11

!

sarvice

I 1

Buginess

Businass
sarvice

1

!

Data-access
sarvice

[

!

Data-access
sarvice

I

}

Data-access
sarvice

[W[] Databases

Liser clicks on i
Add to Cart button. |

Service Oriented Architecture (SOA)

Service-Oriented Architecture (SOA) is a software design pattern where applications are built using loosely coupled
services that communicate over a network. Each service is self-contained, providing specific business functionalities, and
interacts with other services through standardized protocols such as SOAP, REST, or GraphQL

@ (/SER INTERFACE @ (/SER INTERFACE

Gl @ 0

SERVILE SERVICE SERVICLE SERvILE
COMPONENT COMPONENT COMPONENT COMPONENT
COMPONENT COMPONENT COMPONENT COMPONENT

Principles:
* Reusability

* Interoperability

* Componentization Reference: Service Oriented Architecture - Umair's Blog

N-Tier Applications using SOA in the cloud

Service-oriented application

Web
application

|

!

Business
service

I

!

Integration
sernvice

I 1

}

Business
service

It

Data-access
sarvice

!

Data-access
service

I

1

Data-access
sarvice

f

I

BOA vs Traditional N-Tier Architecture

Ly, X
[I J Databases

geeg

geed

SEee|

Google docs

Salesforce.com

Application Software

£ Windows Az.re
* E0L Azurer

N NET

Operating System
Web Server
Database Management System
Programming Language

‘ Feature

Traditional N-Tier

Service-Oriented Architecture (SOA)

‘Architecture Type”l_ayered (Tightly Coupled)

”Distributed (Loosely Coupled)

|Scalability

”Limjted to vertical scaling

”ngh supports horizontal scaling

[Reusability

”Low (Each application has its own logic)

‘Integraﬁon

”Difﬁcult (Requires changes to the entire s‘_wsn*-:‘m]|‘Easz.-r (Uses APIs and standardized protocols)

‘Securit}'

”Centralized IAM

|
|
|
”High (Reusable services across applications) |
|
|

”Granular security per service (OAuth, API Keys, JTWT)

Service Oriented Architecture
(Application Architecture)
Example: for cloud-based Software as a Service
(no security architecture in example)

User Interacts via the Presentation Layer

(UI sends events to the Application Layer)

Application Layer processes user interactions

(Calls the Service Layer for business operations & data exchange)
Service Layer manages API calls & Data Transfer Objects (DTOs)
(DTOs send structured data between Client & Server)

Domain / Repository Layer handles business logic

(Manages object creation, retrieval, and updates)

Mapping Layer ensures seamless object-relational mapping
(Maps database tables to objects via nHibernate ORM)

Database Layer stores & retrieves structured data

(Data persistence via SQL Server & queries using HQL/T-SQL)

Daru Dat 3
Service v sfar SETVICE S

WebOrb

Services

Object

Domain Repaository

Relational Database Tables

VIMT/IWEIS

System Architecture

Version 0.1

Language
Legend

MXML
ActionScript

SQL

ActionSeript
Service Calls and
Data Types

C#
Service Calls and
Data Types

listen. think. deliver.

ICategorized SOA Layers with Descriptions

resentation

Layer)

users interact with the system.

controls.
- Organizes interactive events (clicks, inputs).

SO0A Layer Role & Description Components & Functions Technologies Used
- Defines layouts, colors, fonts, sizing.
Presentation Layer (UL/ Client Defines the visual aspects of the Ul and how - Uses views, components, renderers, and HTML, CS5, JavaScript, MXNML,

ActionScript, Flash Flex.

Application Layer (Client-Side

Defines the underlying application logic that

- Contains Client-Side Object Model & Object
Managers.
- Handles user interactions & Ul events.

JTavaScript, ActionScript, Angular,

(Business Logic & Data Access)

updating objects exch
and client application.

ged with the datab

- Implements repositories for querying objects.
- Business rules and logic are enforced here.

Logic & Event Handling) runs within the browser (client-side). | Makes service calls to exchange data with the React, Vue.js.
SEIVEL.
- Defines service operations.

Service Layer (API & Exposes business functionalities through service ||- DTOs package data for communication. Web Services (REST, SOAP), API

Communication Layer) operations and DTOs (Data Transfer Objects). (|- Supports multiple DTO versions (rich vs. lite ||Gateway, XML, JSON, WebOQrh, IIS.
data transfers).

. . . - - Loosely coupled to client apps via the Service
Domain / Repository Laver (Contains logic for creating, retrieving, and Layer. (C#, HQL (Hibernate Query Language),

Business Objects.

- Bidirectional mapping between domain objects
and database records.

- Ensures data integrity and backup policies.

Mapping Layer (ORM & Data Maps domain objects to database tables, - Uses nHibernate ORM for object-relational nHibernate, XML, HQL, ORM
Mapping Layer) ensuring a structured data flow. mapping. Mappers.

- Exposes data via repositories with HQL

queries.

- Implemented using SQL Server.
Database Layer (Storage & Data ||Provides permanent storage of data using - Stores data in tables, indexes, views, and stored |[Microsoft SQL Server, T-SQL,
Management) relational database models. procedures. R.elational Databases.

Service o
vk Transfer

Objects

Data
runsfer
Objects

Service G

WebOrb

Domain

Services

Object
Repository

Windows Forms
Authentication

PMMT/IWEIS

System Architecture

Version 0.1

Language
Legend

MXML
ActionScript
SQL

XM

ActionSeript
Service Calls and
Data Types

(&
Service Calls and
Data Types

listen. think. deliver.

Development Infrastructure Example... —

D

Sharing Wiki lenkens Nexus+Mavin
SOA Workflow & Data Flow in Development Collaboration Framework Stash-Git

1. Presentation Layer (UI)
Jira, Confluence, FishEye

o Users collaborate, create tasks, and track changes.

o Interacts with Application Layer for development workflows.

2. Application Layer (Development & CI/CD)
Git (Stash), Jenkins, Nexus+Maven

o Developers commit code.
o Jenkins automates build & integration.
o NexustMaven prepares packaged applications.

3. Service Layer (Infrastructure & Monitoring)
AWS IAM, CloudFormation, CloudTrail, CloudWatch

o Automates infrastructure deployment.
o Monitors application servers, database, and cloud services.

4. Domain / Repository Layer (Application Services)
Node.js (Application & Geospatial Server), MapServer

o Runs the application logic & APIs.
o Interacts with Mapping Layer for data retrieval.

5. Mapping Layer (ORM & Data Processing)
nHibernate ORM, Oracle Spatial & Graph File server

o Translates queries into database transactions.

o Exposes processed data to the Domain Layer.

6. Database Layer (Persistent Storage)
- EC2
Oracle Database 12¢, AWS EC2 with EBS oo e
. . . ORAMLE 1 2{,‘
o Stores application data & geospatial records. L

With Spatial and Groph

o Provides long-term data retention.

v Confluence \
< Document >

Development Collaboration Framework

__ Sharing Wiki

S

Jenkens
Iintegration &
Build Automation

Nexus+Mavin
App Packaging
& Deployment

'/_./

Stash-Git N
Source Control /)

FishEve
Change Tracking

dira
Issue Tracking &
Task Planning

Table: SOA Layers & Their Role in the Development Collaboration Framework

SOA Layer

Role & Description

Components / Tools

Eelationships

Presentation Laver (UT &
Collaboration Layer)

Provides a user-friendly interface for
documentation, issue tracking, and team
collaboration.

- Confluence (Document Sharing Wiki)
- Jira (Issue Tracking, Task Planning)

- FushEye (Change Tracking)

- Interacts with the Application Layer for
source control and automation.

Application Layer (Development
& Buld Automation Layer)

Manages code versioning, integration,
build automation, and deployment
packaging.

- Stash-Gat (Source Control)

- Jenkans (CI'CD & Build Automation)
- NexustMaven (App Packaging &
Deployment)

- Fetches code from Presentation Laver
(Developers’ IDEs).

- Sends build artifacts to Service Laver
(Cloud Infrastructure).

Service Layer (Infrastructure &
Cloud Management Laver)

Automates cloud provisioning, monitoring,
and resource allocation.

- AWS TAM (Identity & Access
Management)

- CloudF ormation (Infrastructure as
Code)

- CloudTrail, CloudWatch (Logging &
Monitoring)

- Deploys applications to the Domain Layer
(App & Geospatial Servers).
- Monitors infrastructure health.

Domain / Repository Laver
(Application Services &
Business Logic Layer)

Implements application services and
geospatial logic.

- Application Server: Node js
- Geospatial Server- Node 35, MapServer

- Uses Mapping Layer to fetch/store
geospatial data.

- Exposes APIs to Presentation &
Application Layers.

Mapping Laver (ORM & Data ||Translates data objects into database - nHibernate, ORM (if used) - Retrieves data from Database Layer.
Handling Layer) transactions. - Oracle Database 12c (Spatial & Graph) ([- Exposes processed data to Domain Layer.
Database Laver (Storage & File ||Provides data storage for application and ||~ Oracle Database 12c (Spatial & Graph) |- Serves as the backend storage for Mapping

Management Layer)

geospatial data.

- AWS EC2 with EBS (File Storage)

& Domain Layers.

Continuous Integration &
Continuous Deployment

Helps development team make system builds,

triggered by either @@ 3
« A commit of updated source code to the version v oevTeam
control system amason.

* Scheduling directive

* A dependency on the completion of another
component’s build

» Developer kicking off the build using a URL to make
the request

Development Infrastructure Example...

VPC = virtual private cloud

File server

T s

EC2 w/EBS
Database Server

S 12

With Spatial and Graph

Application 3+ Tier Architecture examn!~

Table: SOA Layers in the 3-Tier System

Browser Client

& Angulor S Lx
- JowaSiriph FOMA-D62 Standard [ECMA Sorpt 5.1)

& OpesLoyen 10
. Tetp

» Adenin

R

and reporting.

mapcache)
- Quernies, Analytics, Reporting

SOA Layer Role & Description Components & Technologies Interactions & Relationships
- Sends service calls (JSON, TLS,
- Angular]S 1.x (Ul Framework) RESTful APIs) to the Application
Presentation Layer (Client |[Provides User Interface (UI) and |- ECMAScript 5.1 (JavaScript Standard) Layer.
Layer) Frontend Interactions. - OpenLavers 3.0 (Map Rendering) - Receives dynamic/static map tiles,
- Turf 3s (Geospatial Calculations) query results. media files from the
Service Layer.
- Receives data requests from the
- Node js v4 Application Server Presentation Layer.
Application Layer Processes user requests, - Express (Web Server Framework) - Calls RESTful APIs for user
(Business Logic & authentication, logging, and - npde_redis (Cache Management) management, geospatial services,
Middleware Layer) business rules. - passport-oauth? (Authentication) media retrieval.
- swagger-node (API Documentation) - Manages user authentication and
authorization.
- RESTful Web API (For communication) Li";f““l‘;”gl‘:s with Application
e Loer ([P seomate v, | Uty & ccom Mamaemen LRt o e Dt
Backend Services Layer) - £ : R D THanARINEL Layer.

- Sends responses back to the

Presentation Laver.

Data Laver (Database &
File Storage Laver)

Stores structured and unstructured
data.

- Oracle Database (Geospatial Data, User
Profiles, Organizations, Passwords)
- File Server (Static Media, Map Files, Pre-

rendered Maps)

- Serves data to Service Layer via

Stores user details, media files, and

node-pragledh APIs.
L&ospatia.l datasets.

- Static
Service calls [5on Dymamic Madia ey
mag thes ™39 fles _— TLS
iz ey
Node 15 vd
Application Server
s apeens
® Jovaloript FOMA-JED Stondord [ECMA Seript 5.1)
- node_redis
¥ pOIpOT-DOuRT

User identity,

7 i
Access Minagement, and Scewardihig |

Chpbbtaty =

Y) Y Y Y
) () (GERE0) (o) (W)

Oracle

Agenda

v'Team Project Guidance

v Distributed Systems

v'File Server Architecture

v’ Client/Server Architecture

v'N-Tier Architecture

v'Cloud Architecture

v'Service Oriented Architecture (SOA)

v'Example Cloud-based N-Tier SOA Application Development System
* Control Stages, Objectives, Application Security Testing

e Additional Best Practices

* Team Project Guidance

Information System Development Control Stages

When designing software, control objectives ensure that the system functions as intended while
maintaining security, accuracy, reliability, and compliance. These objectives cover three primary

phases: input, processing, and output.

Control over applications is conducted at every stage and begins at the start of the development of
the information system

This takes 2 basic forms:
1. Control over the development process itself
2. Ensuring adequate business controls are built into the finished product

Major control stages would include:
* System design
* System development -
* System operation
e System utilization

Control Objectives for Business Information Systems

Information System

Process Data

1. Input control objectives
2. Processing control objectives
3. Output control objectives

Control Objectives for Business Information Systems

Information System

Process

Input Control Objectives

Input controls ensure that data entering the system is accurate, complete, and valid. Poor input
validation can lead to security vulnerabilities such as SQL injection, buffer overflows, and
incorrect data processing.

» Validation: Ensure that input meets predefined criteria (e.g., format, length, range).
o Authorization: Verify that only authorized users can enter or modify data.

e Sanitization: Prevent malicious input such as SQL injection, XSS (Cross-Site Scripting),
and code injection.

 Error Handling: Provide clear error messages without exposing system details.
« Data Integrity: Ensure data is not altered during input.
o Logging & Audit Trails: Track input attempts for forensic analysis.

Example:

e A web form validates an email field to ensure proper format before submission.
» Input sanitization prevents users from injecting malicious scripts into text fields.

Control Objectives for Business Information Systems

Information System

Process

*

Processing controls ensure that the system handles input correctly, maintains integrity, and Controls over processing may include:
performs operations securely. e Control totals

Processing Control Objectives

+ Completeness: Ensure all required operations are executed (no loss of data). * Programmed balancing
» Accuracy: Maintain precision in computations and data transformations. * Reasonableness tests
. Conn!rrency & Cons!sti-tncy: Prevent race conditions, (.iata cﬁrrqptlorl., and de?.dlocks. * Segregation of duties
» Security & Confidentiality: Protect data from unauthorized modifications during .

processing. * Restricted access
« Transaction Control: Implement atomicity, consistency, isolation, and durability * File labels

(ACID) principles. * Exception reports
» Exception Handling: Handle unexpected scenarios without system crashes. P P
+ Performance Monitoring: Ensure efficient resource utilization. * Errorlogs

* Concurrent update control
Example:

» A banking application correctly calculates interest rates without rounding errors.
» A payroll system ensures that all employees receive the correct salary after applying
deductions and bonuses.

Control Objectives for Business Information Systems

Information System

Process

Output Control Objectives

Output controls ensure that the final product (reports, files, user interfaces) is accurate, complete,

and secure. e Controls over output may

s Accuracy: Ensure output data matches the expected results. include:

» Confidentiality: Protect sensitive information (e.g., encryption of reports, access * Assurance that the results of

control). input and processing are output

» Access Control: Restrict output visibility based on user roles. « Output is available to only

+ Format Consistency: Maintain readability and compliance with standards. i

+ Auditability: Log all output transactions for review and verification. authorized personnel

» Delivery Assurance: Ensure output reaches the intended recipient securely. * Complete audit trail

* Output distribution logs

iExample:

» A financial report is generated with properly formatted data and sent securely via
encrypted email.
* A receipt is only shown to an authenticated user after an online transaction.

Control Objectives for Business Information Systems

Computer program control objectives focus on Information System
* Integrity of programs and processing :
* Prevention of unwanted changes Process

Typical computer program controls include:
* Ensuring adequate design and development
* Ensuring adequate testing
* Controlled transfer of programs (among machines, from version control, ...)
* Ongoing maintainability of systems
* Use of formal SDLC
* User involvement
* Adequate documentation
* Formalized testing plan
* Planned conversion
* Use of post-implementation reviews (see CISA chapter)
* Establishment of a quality assurance (QA) function
* Involvement of internal auditors

Testing of these controls require IT auditors to seek evidence
regarding their adequacy and effectiveness....

PPTM - People, Processes, Tools, and Measures

A brainstorming framework for examining security of an application from the macro-level, based on
People — describes every aspect of the application that deals with a human

* Make sulre ;cjhe right people are involved in planning, design, implementation or operations, and the right stakeholders
are involve

* E.g. If the application involves end users, ensure:
* The application has controls around providing and removing access
* End users have been involved with the planning and design of components they will (to ensure usability)

P%‘ocess — Describes every aspect of the application that is involved in a policy, procedure, method, or course
of action

* Review the interaction of the application with interfacing systems and verify compliance with security models
* E.g. Ensure that firewalls are in place to protect the application from external applications, users, business partners, ...
* Policies and procedures should be written to support how the application is intended to be used
* Adequate documentation should exist to support technicians who need to maintain the application
Tools — Describe every aspect of the application that deals with concrete technology or product
* Ensure appropriate hardware and environment exist to support the application

. Ensurg the application interfaces with recommended technologies appropriate for your intended policies and
procedures

* Verify that the application and infrastructure are tested and audited appropriately

Measures — Describe every aspect of the application that is quantifiable conceptually, such as the business
purpose or application performance

* E.g. verify that the application meets well-documented and well-thought out acceptance criteria

* E.g.if the application is intended to solve a quantifiable business problem verify that it does indeed solve the problem
* Verify that the logs are meaningful and that you can measure the performance of the application

Threat Desired property

STR I D E Spoofing Authenticity

Tampering Integrity

Repudiation Non-repudiability
A “simplified threat-risk model” which is easy to remember Information disclosure | Confidentiality
Spoofing Identity Denial of Service Availability

* Is a key risk for applications with many users and a single execution context at the application and database tiers | Elevation of Frivilege | Authorization
* Users should not be able to become any other user or assume the attributes of another user

Tampering with Data
* Data should be stored in a secure location, with access appropriately controlled

* The application should carefully check data received from the user and validate that it is “sane” (i.e. relevant and valid) and applicable before
storing or using it

* Data entgred Ln the client (e.g. browser) should be checked and validated on the server and not in the client where the validation checks might be
tampered wit

* Application should not send and calculate data in the client where the user can manipulate the data, but in the server-side code

Repudiation
. De'éermine if the application requires nonrepudiation controls, such as web access logs, audit trails at each tier, or the same user context from top
to bottom

* Users may dispute transactions if there is insufficient auditing or record-keeping of their activity
Denial of Service
* Application designers should be aware that their applications are at risk of denial of service attacks

¢ Use of expensive resources (e.g. large files, heavy-duty searches, long queries) should be reserved for authenticated and authorized users and
should not be available to anonymous users.

* Every facet of the application should be engineered to perform as little work as possible, to use fast and few database queries, and to avaoid
exposing large files or unique links per user to per user to prevent simple denial-of-service attacks

Elevation of Privilege

* If an application provides distinct user and administrative roles, ensure that the user cannot elevate his or her role to a more highly privileged
one

* All actions should be controlled through an authorization matrix to ensure that only the permitted roles can access privileged functionality. It is
not sufficient, for example, to not display privileged-role links

MIS 5214 Security Architecture 29

* Vulnerabilities

APl Abuse

» Authentication Vulnerability

» Authorization WVulnerability
Availability Vulnerability
Code Permission Vulnerability
Code Quality Vulnerability
Configuration Vulnerability
Cryptographic Vulnerability
Enceding Vulnerability
Environmental Vulnerability
Error Handling Wulnerability
General Logic Error Vulnerability
Input Validation Vulnerability
Logging and Auditing Vulnerability
Password Management Vulnerability
Path Vulnerability
Sensitive Data Protection Vulnerability
Session Management Vulnerability
Unsafe Mobile Code
Use of Dangerous API

MIS 5214 Security Architecture

* Principles

» Apply defense in depth (complete mediation)

+ Use a positive security model (fail-safe defaults, minimize attack surface)
» Fail securely

+ Run with least privilege

» Avoid security by obscurity (open design)

s Keep security simple (verifiable, economy of mechanism)

« Detect intrusions (compromise recording)

« Don't trust infrastructure

» Don't trust services

s Establish secure defaults (psychological acceptability)

OWASP (Open Web Application Security Project) Frameworks

* Top 10 Web Application

Security Risks

A1:2017 - Injection ...
A2:2017 - Broken Authenticationo...
A3:2017 - Sensitive Data Exposure ...
A4:2017 - XML External Entities (XXE)
A5:2017 - Broken Access Control ...

AB:2017 - Security Misconfiguration_............_....
AT:2017 - Cross-Site Scripting (X5S)oocooviviine

AB:2017 - Insecure Deserialization

A9:2017 - Using Components with Known

—_ e e | e
hm'm—hll‘_‘iltﬂ|M|"-l

—
o

Wulnerabilities ... 15

A10:2017 - Insufficient Logging & Monitoring..............

30

—
=]

Application Security Testing

Software testing is the process of evaluating a software application to ensure it meets its
intended requirements and functions correctly, efficiently, and securely.

saS | vs. DAS
PN D) S Ay L
Static application security testing (SAST) and dynamic application security testing (DAST)

are both methods of testing for security vulnerabilities, but they're used very differently.

Here are some key differences between the two:

v

White box security testing

+ The tester has acoess to the
underlying framework, design, and
implementation

« The applicat
inside out

+ This type of testin
developer approach

tested from the

Analysis (SCA)

licensing issues.

violations.

open-source licenses
- Finds outdated
dependencies

Dependency-Check

MIS 5214 Security Architecture

Testing Method Definition How It Works Key Benefits Example Tools e (
- Detects vulnerabilities e
Static Application White-box testing method that examines ||Scans code for vulnerabilities such as SQL ea}[ll}i miDLF fix Sa be
Security Testing source code, byte code, or compiled injection, XSS, and hardcoded credentials n elps -‘;ie olpe?s Dit - rLiﬁ'l v - G dE.BSI]LEG& Finds vulnerabilities \
(SAST) hinaries before execution. without running the application. 1S5UES pre-Ceploymen oruly, Veracoce j’“""' e S
= - No need for a running ol ety
application
Finds runtime e |
Dynamic Application |(Black-hox testing methad that examines a ||Simulates real-world attacks by sending vulnerabilities . . . S
. . - . = e I - Does not require source |[Burp Suite. OWASP ZAP, T e
Security Testing running application from an external malicious inputs and analyzing responses to ode access ; N . A e
(DAST) perspective. identify security weaknesses. Detects authentication Acmuetix AppSRIdSL. -
. X an't discover run-time |
flaws, injections, etc. :.-nsdu ::viranmem-related
- Provides real-time " o e v winsbikies
feedback on vulnerabilities
. .. Hybrid approach combining SAST and ||Instruments the application and observes its - More accurate than DAST] . Typically supportsall |
]Sizflr;izf‘ﬁiip;pll&tlg][}) DAST techniques to monitor applications |runtime behavior to detect security issues due to contextual gorltsrist S;i:;g HCL el
- g in real time. dynamically. awareness Ppocan, e vt i T LR,
- Integrates into CI/'CD
pipelines SAST and DAST
- Detects security ris_l{s in onch othor
Software Composition Analyzes third-party and open-source |(|Scans dependencies to identify vulnerabilities. soth.j, are suppl}-ljc s ith Black Duck. Snyk.
P components for security risks and outdated libraries, and license compliance - LOSUres Compuance withh |y iseSource, OWASP

|+ The tester has no knawledge of the

. application

Y : itanalyzes by executing the

— — —n
_ Finds vulnerabilities toward

Y the development cycieis complete

’r Can discover run-time and |

| o an appica

| run-time vuinersbilties.

r - - \
Typically scans only apps

N 0ASTis not useful for other types of
ware.

| Black box security testing |

o frameworks that the

+ This type of testing rep he
hacker approach.
——e B
Requires a running
+ DAST doesi1 require source code or
binaries.

| application
A\

the end of the SDLC

 Wuinerabilities can be discovered after

| More expensive to fix
vulnerabilities

* Since vulnerabilities are found toward |
the end of the SDLC, remediation often
gets pushed into the next cycle.

| -« Critical vuinerablliies may be fixed as
an emergency release.

environment-related issues |

* Since the 100l Uses dynamic analysis
tion, itis able ta find

like web applications and |
web services

| softwar

Both need to be carried
out for comprehensive
testing.

31

Automated application security testing tools provide
vulnerability reports

(EZCheckmarx

Executive Summary

Total Vulnerabilities

279 1

120

WebGoat
Code Security Report »

)

Scan Information
Application name
Project name:

Project type:

Risk level:

Result triage:

Vulnerabilities per Engine

sasT

WebGoat - Standard
WebGoat
Web App. Mobile, Desktop, Services, Default-Other

100% To Verify

sca:
100% Not Ignored

mHEgh m Med

MIS 5214 Security Architecture

Scan Results Overview
File name:
Scan 1D: 1
Hashcode: abd227d568dc64e3206d86fec6898026
Origin: null
Languages: Java, JavaSaript
Mumber of engines: 2
Total LOC: 0
Completed date: 10/11/2020

SAST

203 100 45

. ___}
SCA
7 41 34
I —

Risk level: m

Packages: 749 | Risk level: m

1

32

SAST Compliance Report Examples

OWASP Top 10 2013

Vulnerabilities: 152

PCIDSSv3.2

Vulnerabilities: 126

Top 10 vulnerability types:

Bl Reflected_xss_All_Clients (39)

B3 sQL_Injection (23)

H Client_DOM_Open_Redirect (16)

B stored xss (10)

B xsrF (9)

H Use_of_Cryptographically_Weak_PRNG (8)
Heap_Inspection (8)

u Use_of_Hard_coded_Cryptographic_Key (8)
ﬂ Client_Query_Deprecated_Symbols (7)

m Use_Of_Hardcoded_Password (7)

Top 10 vulnerability types:

BJ reflected X55_All_Clients (39)

B soL_injection (23)

B3 stored_xss (10)

B xsrr @

ﬂ Use_of_Hard_coded_Cryptographic_kKey (8)
3 use of_Cryptographically_Weak_PRNG (8)
EA Loz Forging 7)

u Use Of Hardcoded_Password (7)

B dlient_potential_xss (3)

m HittpOnlyCookies (3)

MIS 5214 Security Architecture

@DLUHSD_

OWASP Top 10 2017

Vulnerabilities: 154

OWASP Mobhile Top 10 2016

Vulnerabilities: 66

@owrse,

Top 10 vulnerability types:

BB Rreflacted_xss_All_Clients (39)

B soL injection (23)

B Use Of Hardcoded Password (13)

B stored_xss (10)

H Use_of Hard_coded_Cryptographic_Key (8)
ﬂ Use_of_Cryptographically_Weak_PRNG (8)
Heap_lnspection (8)

n Use_Of_Hardcoded_Password (7)

Bl Loz Forging (1)

m Client_|Query_Deprecated_Symbols (7)

Top 10 vulnerability types:

B soLinjection (23)

B3 side Channel Data Leakage (17)

H Use_of_Hard_coded_Cryptographic_Key (8)
n Log Forging (7)

B Use Of Hardcoded_Password (7)

u Inadequate_Encryption_Strength (2)

a Deserialization_of_Untrusted_Data (2)

@ownse

20

SAST Compliance Report Examples

FISMA 2014

Vulnerabilities: 161

Top 10 vulnerability types:

Bl Reflected_xSS_All_Clients (39)

B3 soL_injection (23)

B Client_DOM_Open_Redirect (16)

u Use_Of Hardcoded_Password (13)

B stored_xss (10)

ﬂ Use_of_Cryptographically_Weak_PRNG (8)
Use_of_Hard_coded_Cryptographic_Key (8)
u Heap_lnspection (8)

Bl Log Forging 0

m Use_Of Hardcoded_Password (7)

MIS 5214 Security Architecture

Eisms

NIST SP 800-53

Vulnerabilities: 172

Top 10 vulnerability types:

BN Rreflected_xss_all_Clients (39)

B soL injection (23)

ﬂ Client_DOM_Open_Redirect (16)

n Use_Of Hardcoded_Password (13)

B} stored_xss (10)

B xsrF @)
Use_of_Cryptographically_Weak_PRNG (8)
u Use_of_Hard_coded_Cryptographic_Key (8)
u Heap_Inspection (8)

B use_of Hardcoded_Password (7)

NIST

34

DAST Report

ecurity Ane

SCAN SUMMARY

hipJidemo.testiie net

This site was checked for 65 classes of vulnerabilities, with up to hundreds of tests for each
vulnerability class. This site is considered to be Very Unsafe as of June 17, 2020,

VULNERABILITY CLASSES

The following types of vulnerabilities were looked for over the 27 URLS found during this security

scan

Allowed HTTP methods
Blind SQL Injection (timing attack)
Cliekjacking

Credit card number disclosure

Cross-Site Seripting in attribute of HTML
element

Cross-Site Seripting in HTML *script” tag
Cross-Site Scripting in HTML “vbscript” lag
Cross-Site Scripting (XSS) in path
Directory listing is enabled.

Disclosed US Social Security Number

File Inclusion

Found an HTML object

Found Stacklrace

HTTP PUT is enabled

LDAP Injection

Missing Subresource Integrity Protection
Non HTTP-Only Cookies

Operating system command injection
Password field with autocomplete

Path Traversal

Persistent Cross Site Seripting (XSS)
Remote file inclusion

Scriptless Cross-Site Scripting in attribute
of HTML element

Session Caokle Expiration

Session ID Entropy

Spammabie contact form

SSLv3 Enabled

The TRACE HTTP method is enabled
TLS Vuinerable to POODLE

Unencrypted password form

WebDAV

XPalh Injfection

YAML Injection timing)

ASPNET DEBUG Method Enabled
Buffer Overfiow

Code Injection

Cross-Site Request Forgery

Cross-Site Seripting in event attribute of
HTML element

Cross Site Scripting in HTML tag
Cross-Site Scripting (XSS)

CVSISVN user disciosure

Disclosed e-mail address

DOM Based Cross-Site Seripting
Found a CAPTCHA protecied form
Found Robots. txt

FrontPage Extensions Enabled
Insecure Cookies

Misconfiguration in LIMIT directive of
htaccess flie

Mixed Resource

OpenSSL Heartbeat Extension Memory
Leak (Heartbleed)

Outdated TLS Supported

Password Submission via GET
Permissive CORS Policy

Private IP address disclosure
Response spliting

Server-Side Include Injection

Session Fixation
Shellshock

SOL Injection

Strutshock (CVE-2017-5638)

TLS Fallback is not Supported
Unencrypted HTTP Basic Authentication
Unvalidated redirect

XML External Entity Injection

YAML Injection

MIS 5214 Security Architecture

SCAN OVERVIEW
STATUS ON 06/17/2020

NUMBER OF VULNERABILITIES

<>
E(‘?J},

Very Unsafe

WHAT'S THE WORST THAT COULD HAPPEN?

~
33 o

MED
8 HiGH

Total Vulnerabilities

With your current vulnerabilities a hacker could potentially i

iitrate your website, steal your

user's cookies, log the keys they type. and pretend to be them on your website. And that's

Just the tip of the iceberg. Data breaches like thi
loss in your customer base. We highly re

once disclosed, can often lead to a 20%
you fix these quickly and

with much vengeance.

LOGIN STATUS

Login Successful: Yes

SITEMAP

http//demo testfire.net/
hitp://demo testfire.net/admin/admin.jsp
hitpJ//demo testfire.net/bank/apply jsp
hitpJ//demo testfire.net/bank/ccApply
hitpJ//demo testfire.net/bank/customize jsp
hitp/idemo testiire.net/bank/doTransfer
hitp:/idemo testiire.net/bank/main jsp
hitpJ//demo testfire.net/bank/queryxpath jsp
testfire.net/bank/st it

hitp//demo testfire net/bank/showTransactions
hitpJ//demo testfire.net/bank/transaction jsp
hitpJ//demo testfire.net/bank/transfer jsp
http//demo testfire.net/default jsp

hitp:/idemo testiire. net/disclaimer hitm
hitpJ/demo testfire.net/doSubscribe
hitpJ/demo testfire.net/feedback. jsp
hitp//demo testfire net/index jsp

hitp:/idemo testiire.net/search jsp

hitp:/idemo testiire.net/sendFeedback

http//demo testfire.net/status_check jsp

VULNERABILITY: CROSS-SITE REQUEST FORGERY

DETAILS

Severity
URL

Variable
Element

INJECTION
Matched by Regular Expression

DESCRIPTION

High
http://demo.testfire.net/admin/admin jsp
addAccount

form

<form id="addAccount” name="addAccount”
action="" method="post™ <tr> <td colspan="4">
<h2>Add an account to an existing user</h2>
<fd> <Hr> <tr> <th> Users: </th> <th> Account
Types: </th> <th> </th> <th> </th> </tr> <tr> <td>
<select name="username" id="username”
size="1"> <option value="admin">admin</option>
<option value="jdoe">jdoe</option> <option
value="jsmith">jsmith</option> <option
value="sspeed">sspeed</option> <option
wvalue="tuser">tuser</option> </select> </td> <td>
<select name="accttypes"> <option
wvalue="Checking">Checking</option> <option
value="Savings" selected>Savings</option>
<option value="IRA">IRA</option> </select> </td>
<td></td> <td><input type="submit" value="Add
Account"></td> </tr> </form>

Cross-Site Request Forgery (CSRF) allows an attacker to execute actions on behalf of an unwitting
user who is already authenticated with your web application. If successful, user data and user actions
can be compromised. If the user who is attacked with CSRF happens to be an administrator, the entire
web application should be considered compromised. CSRF occurs when a user submits data to a
form or input he/she did not intend; usually an attacker will accomplish this by sending them a link or

convincing them to input to a different form that looks similar and posts to the same place.

HOW TO FIX

A unique token that guarantees freshness of submitted data must be added to all web application
elements that can affect business logic.

REFERENCES

Wikipedia - http://en.wikipedia.org/wiki/Cross-site_request_forgery

CGI Security - httpi//www.cgisecurity.com/csrf-fag.html
OWASP - https://wiki.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

35

Application Security Assessment and Recommendations

Issue Types @ e Fix Recommendations @ Toc

Issue Type Number of Issues Remediation Task Number of Issues

[l Authentication Bypass Using HTTP Verb Tampering
m Cross-Site Request Forgery 23
m Cross-Site Scripting

[l Review possible solutions for hazardous character injection
m Add the 'Secure’ attribute to all sensitive cookies
m Microsoft FrontPage Extensions Site Defacement m Configure your server to allow only required HT TP methods
m Missing Secure Attribute in Encrypted Session (SSL) Cookie
m RC4 cipher suites were detected

2
5
m Change server's supported ciphersuites 2
3
3

m Set proper permissions to the FrontPage extension files

Validate the value of the "Referer” header, and use a one-time-nonce 23 -
for each submitted form

m Alternate Version of File Detected 45 Always use SSL and POST (body) parameters when sending 185
m Body Parameters Accepted in Query 9 sensitive information.

m Browser Exploit Against SSL/TLS (a.k.a. BEAST) Apply configuration changes according to Q218180

m Cacheable SSL Page Found &7 Apply proper authorization to administration scripts

m Direct Access to Administration Pages
m Drupal "keys" Path Disclosure
[nsecure "OPTIONS" HTTP Method Enabled

1
1
Config your server to use the "Content-Security-Policy" header 5
Config your server to use the "X-Frame-Options" header 4

1

Contact the vendor of your product to see if a patch or a fix has been

made available recently
m Microsoft FrontPage Server Extensions Vital Information Leakage Disable WebDAV, or disallow unneeded HT TP methods 1

m Microsoft IS Missing Host Header Information Leakage Do not accept body parameters that are sent in the query string 9

B N s s

|
|
|
|
|
[|
1
[
|
|
|
m Query Parameter in SSL Request 185 _ Prevent caching of SSL pages by adding "Cache-Control: no-store" 67
|
|

m Missing "Content-Security-Policy” header Modify FrontPage extension file permissions to avoid information 2
leakage

m Missing Cross-Frame Scripting Defence Modify your Web.Config file to encrypt the VIEWSTATE parameter 20

m Temporary File Download 3 and "Pragma: no-cache" headers to their responses.

m Unencrypted _ VIEWSTATE Parameter 20 Remove old versions of files from the virtual directory 48

Remove source code files from your web-server and apply any 1

m Web Application Source Code Disclosure Pattern Found 1 relevant patches

MIS 5214 Security Architecture 36

This report contains the results of a web application security scan performed by IBM Security AppScan Standard.

High severity issues: 79

Medium severity issues: 198
Total security issues included in the report: 277
Total security issues discovered in the scan: 308

Application Security
Vulnerability
Assessment Report

MIS 5214 Security Architecture

Issues Sorted by Issue Type

Authentication Bypass Using SQL Injection B

Blind SQL Injection N

Cross-Site Request Forgery IEX

Cross-Site Scripting E

HTTP PUT Method Site Defacement EXl

Inadequate Account Lockout Kl

Microsoft FrontPage Extensions Site Defacement Ei

Missing Secure Attribute in Encrypted Session (SSL) Cookie KN
Phishing Through URL Redirection K

WebDAV MKCOL Method Site Defacement El

Alternate Version of File Detected IEl

Cacheable SSL Page Found EA

Hidden Directory Detected KA

Microsoft FrontPage Configuration Information Leakage K
Microsoft FrontPage Server Extensions Vital Information Leakage El
Microsoft IIS Missing Host Header Information Leakage Ki
Query Parameter in SSL Request

Temporary File Download EA

Unencrypted _ VIEWSTATE Parameter Kill

Web Application Source Code Disclosure Pattern Found El3;

AppScan example

Advisories

* Authentication Bypass Using SQL Injection _

= Blind SQL Injection

® Cross-Site Request Forgery

= Cross-Site Scripting

= HTTP PUT Method Site Defacement

* |Inadequate Account Lockout

= Microsoft FrontPage Extensions Site Defacement

® Missing Secure Attribute in Encrypted Session (SSL) Cookie
= Phishing Through URL Redirection

= WebDAV MKCOL Method Site Defacement

= Alternate Version of File Detected

= Cacheable SSL Page Found

* Hidden Directory Detected

= Microsoft FrontPage Configuration Information Leakage

* Microsoft FrontPage Server Extensions Vital Information Leakage

®* Microsoft IIS Missing Host Header Information Leakage
= Query Parameter in SSL Request

* Temporary File Download

= Unencrypted _ VIEWSTATE Parameter

= Web Application Source Code Disclosure Pattern Found

MIS 5214 Security Architecture

H Authentication Bypass Using SQL Injection E

Issue 1 of 2 T0C

Authentication Bypass Using SQL Injection

Severity:

URL: https:/iwww.r., ... T s i L =

Entity: UserName (Parameter)

Risk: It may be possible to bypass the web application's authentication mechanism
Causes: Sanitation of hazardous characters was not performed correctly on user input
Fix: Review possible solutions for hazardous character injection

Reasoning: The test result seems to indicate a vulnerability because when four types of request were sent - a valid login, an invalid

login, an SQL attack, and another invalid login - the responses to the two invalid logins were the same, while the response
to the SQL attack seems similar the response to the valid login.

Issue 2 of 2 ToC

Authentication Bypass Using SQL Injection

Severity:

URL: https:/fiwww. =" e L e e s R S

Entity: Password (Parameter)

Risk: It may be possible to bypass the web application’s authentication mechanism
Causes: Sanitation of hazardous characters was not performed correctly on user input
Fix: Review possible solutions for hazardous character injection

Reasoning: The test result seems to indicate a vulnerability because when four types of request were sent - a valid login, an invalid

login, an SQL attack, and another invalid login - the responses to the two invalid logins were the same, while the response
to the SQL attack seems similar the response to the valid login.

38

Authentication Bypass Using SQL Injection ToC

Test Type:

Application-level test

Threat Classification:
Insufficient Authentication

Causes:
Sanitation of hazardous characters was not performed correctly on user input

Security Risks:

It may be possible to bypass the web application’s authentication mechanism
Affected Products:

CWE:
5868

References:

“Web Application Disassemily with ODBC Error Messages™ (By David Litchfiekd)
SQL Injection Training Module

Technical Description:

The application uses a protection mechanism that relies on the existence or values of an input. but the input can be modified by an untrusted user
in a way that bypasses the protection mechanism.

‘When security decisions such as authentication and authorization are made based on the values of user input, attackers can bypass the security of
the software.

Suppose the query in question is:
CHLECT [OUWT(*] FROM accounts WHERE usarmameSuser” AMD password-'$pass’
Where Suser and Spass are user nput (collected from the HTTP request which invoked the script that constructs the query - either from a GET

request query parameters, or from a POST request body parameters). & regular usage of this query would be with values Juser=john,
Spassword=secret123. The query formed would be:

CELECT (OONT(*) FEOM accomts WHUERE usorfome-"john’ KD possword-'secrobl?i®

The expected query result is 0 if no such user+password pair exists in the database, and =0 if such pair exists {i.e. there is a user named John' in
the database, whose password is 'secret!123). This would serve as a basic authentication mechanism for the application. But an attacker can
bypass this mechanism by submitting the following values: Suser=john, Spassword=" OR "1'="1.

MIS 5214 Security Architecture

Technical Description:
The application uses a protection mechanism that relies on the existence or values of an input, but the input can be modified by an untrusted user
In a way that bypasses the protection mechanism.

When security decisions such as authentication and authorization are made based on the values of user input, attackers can bypass the security of
the software.

Suppose the query in question is:

SELECT COUNT(*) FROM accounts WHERE username='Suser' AND password='S5Spass'

Where $user and $pass are user input (collected from the HT TP request which invoked the script that constructs the query - either from a GET
request query parameters, or from a POST request body parameters). A regular usage of this query would be with values $user=john,
$password=secret123. The query formed would be:

SELECT COUMT (*) FROM accounts WHERE username='john' AND password='secretl23’

The expected query result is 0 if no such user+password pair exists in the database, and =0 if such pair exists (i.e. there is a user named 'john' in
the database, whose password is 'secret123'). This would serve as a basic authentication mechanism for the application. But an attacker can

bypass this mechanism by submitting the following values: $user=john, $password="OR "1'="1.

The resulting query is:

SELECT COUNT (*) FROM accounts WHERE username='john' AND password='' OR '"1'='1"

This means that the query (in the SQL database) will return TRUE for the user ‘john’, since the expression 1=1 is always true. Therefore, the query
will return a positive number, and thus the user (attacker) will be considered valid without having to know the password.

MIS 5214 Security Architecture 40

Agenda

v'Team Project Guidance

v Distributed Systems
v'File Server Architecture
v'Client/Server Architecture
v'N-Tier Architecture
v'Cloud Architecture
v'Service Oriented Architecture (SOA)

v'Example Cloud-based N-Tier SOA Application Development System
v'Control Stages, Objectives, Application Security Testing
» Additional Best Practices

Additional best practices for secure application development

O 0 N O LA W RE

Defense-in-Depth

Positive Security M odel Characteristics which can help in
. quickly spotting common weaknesses
Fail Safe Iy and poor controls

Run with Least Privilege

Avoid Security by Obscurity

Keep Security Simple

Use Open Standards

Keep, manage and analyze logs to detect Intrusions
Never Trust External Infrastructure and Services

10. Establish Secure Defaults

Defense In Depth

Layered approaches provide more security over the long term than one complicated mass of security architecture

* Sequences of routers, firewalls and intrusion detection/protection monitoring devices used to examine data packets,
reduce undesired traffic and protect the inner information systems

* Access Control Lists (ACLs), for example, on the networking routers and firewall equipment to allow only necessary traffic
to reach the different system components (i.e. web servers, application servers, file servers, database servers...)

* Quickly eliminating access to services, ports, and protocols significantly lowers the attack surface and overall risk of
compromise to the system on which the application is running

What is Defense in Depth?

Defense in Depth (DiD) is a cybersecurity strategy that employs multiple layers of security controls to protect information systems and networks. The concept
is rooted in military defense strategies where multiple barriers delay and prevent an adversary’s advance. In cybersecurity, DiD ensures that even if one
security measure fails, other mechanisms remain in place to mitigate risks.

How is Defense in Depth Applied?

Defense in Depth is applied through a combination of administrative, technical, and physical security measures. These include:
« Administrative Controls: Policies, procedures, and security awareness training.

o Technical Controls: Firewalls, intrusion detection systems (IDS), endpoint security, multi-factor authentication (MFA).
« Physical Controls: Access control, surveillance, biometric authentication, locked server rooms.

For example, a corporate network may employ:

« Firewall + IDS/IPS: Blocking unauthorized access.

o Antivirus + Endpoint Detection and Response (EDR): Protecting endpoints from malware.

o Multi-Factor Authentication (MFA): Ensuring identity verification.

o Data Encryption + Access Controls: Securing sensitive data.

Why is Defense in Depth Needed?

« Mitigates Single Points of Failure: If one security control is bypassed, others can still protect the system.

+ Reduces Attack Surface: Multiple layers make exploitation difficult for attackers.

o Delays Attack Progression: Attackers must overcome several defenses, increasing detection and response time.

« Enhances Security Resilience:Provides redundancy to sustain operations even under attack. 44

Positive Security Model

Positive security models use “whitelist” to allow only what is on the list,
excluding everything else by default
* “Deny by default”

* In contrast with negative (blacklist) security models that allow
everything by default, eliminating only the items known to be bad
* Problems:
* Blacklist must be kept up to date

* Even if blacklist is updated, an unknown vulnerability can still exist
* Attack surface is much larger than with a positive security model

Fail Safely

* An application failure can be dealt with in one of 3 ways:

1. Allow
2. Block
3. Error

* In general, application errors should all fail in the same way:

* Disallow the operation (as viewed by the user) and provide no or minimal
information on the failure

* Do not provide the end user with additional information that may help in
compromising the system

* Put the error information in the logs, but do not provide to the user to use in
compromising the system

Run with Least Privilege

* Principle of Least Privilege mandates that accounts have the least
amount of privilege possible to perform their activity

* This includes:

» User rights: file system access permissions, application process access
permissions, and database permissions

* Resource permissions: CPU limits, memory capacity, network bandwidth

Avoid Security by Obscurity

e Obfuscating data (hiding it) instead of encrypting it is a very weak
security mechanism

* If a human can figure out how to hide the data a human can learn how to
recover the data

* Never obfuscate critical data that can be encrypted or never stored in
the first place

Keep Security Simple

» Simple security mechanisms are easy to verify and easy to implement
correctly

* Avoid complex security mechanisms if possible
* “The quickest method to break a cryptographic algorithm is to go around it”

* Do not confuse complexity with layers: Layers are good; complexity isn’t

Use Open Standards

* Open security standards provide increased portability and
interoperability

* IT infrastructure is often a heterogeneous mix of platforms, open
standards helps ensure compatibility between systems as the
application grows

e Open standards are often well known and scrutinized by peers in the
security industry to ensure they remain secure

Keep, manage and analyze logs to help detect intrusions

* Applications should have built-in logging that is protected and easily
read

* Logs help you troubleshoot issues, and just as important — help you to
track down when or how an application might have been
compromised

Never Trust External Infrastructure and Services

* Many organizations use the processing capabilities of third-party
partners that more than likely have differing security policies and
postures than your organization

* It is unlikely that you can influence or control an external third party
* Implicitly trusting externally run systems is dangerous!

Establish Secure Defaults

* New applications should arrive or be presented to users with the
most secure default settings possible that still allow business to
function

* This may require training end users or communications messages

* End result is a significantly reduced attack surface
» Especially when application is pushed out across a large population

Test Areas for Auditing Applications

1. Input Controls, Process Controls, and Output Controls
» Review and evaluate controls built into system transactions for i data

* Determine the need for error/exception reports related to data integrity and evaluate
whether this need has been filled

2. Interface Controls

* Review and evaluate the controls in place over data feeds to and from interfacing
systems

* If the same data is kept in multiple databases and/or systems, ensure that periodic
sync processes are executed to detect any inconsistencies in the data

3. Audit Trails

* Review and evaluate the audit trails present in the system and the controls over those
audit trails

* Ensure that the system provides a means of tracing a transaction or piece of data
from the beginning to the end of the process enabled by the system

Test Areas for Auditing Applications

4. Software Change Controls

* Ensure that the application software cannot be changed without going through a
standard checkout/staging/testing/approval process after it is placed into
production

* Evaluate controls regarding code checkout and versioning

* Evaluate controls regarding the testing of application code before it is placed into a
production environment

* Evaluate controls regarding batch scheduling

5. Backup and Recovery

* Determine whether a Business Impact Analysis (BIA) has been performed on the
application to establish backup and recovery needs

* Ensure that appropriate backup and recovery controls are in place
* Ensure appropriate recovery controls are in place

Test Areas for Auditing Applications

6. Data Retention and User Involvement
* Evaluate controls regarding the application’s data retention
e Evaluate overall user involvement and support for the Application

7. ldentity, Authentication, and Access Controls...
8. Host Hardening...

Agenda

v'Midterm Exam Review
v'Team Project Guidance

v'Distributed Systems
v'File Server Architecture
v'Client/Server Architecture
v'N-Tier Architecture
v'Cloud Architecture
v'Service Oriented Architecture (SOA)

v'Example Cloud-based N-Tier SOA Application Development System
v'Control Stages, Objectives, Application Security Testing
v'Additional Best Practices

